Modèle d’étude de cas de l’IA

Publié le 18 décembre 2017 et mis à jour le 19 décembre 2017 - 9 commentaires -
PDF Afficher une version imprimable de cet article
  

L’IA est un sujet relativement nouveau dans l’actualité des entreprises. C’est même “le” sujet le plus à la mode, après les vagues du cloud, de la mobilité et de la transformation digitale multiforme. Il génère son lot d’IA washing, un phénomène aux contours flous où de nombreux éditeurs de logiciels et startups habillent d’IA leurs solutions. Très souvent, cette appellation correspond à un usage d’une ou plusieurs techniques d’IA qui ne sont malheureusement pas toujours précisées. Les briques technologiques de ces solutions sont soit externes soit internes à la société. Il n’y a pas de mal à ce qu’elles soient externes car on ne reprochera pas à une startup de ne pas réinventer la roue.

Vu des clients, il est critique d’accéder à des études de cas de ces fournisseurs, histoire d’évaluer l’intérêt de lancer tel ou tel projet d’IA dans son entreprise. J’avais évoqué la question du “benchmark de l’IA” dans un post en mai 2017.

Nous avons grandement besoin de formalisme pour décrire les études de cas. Cela permet par exemple d’éviter les déclarations enflammées relayées par les médias et qui ne sont étayées par rien du tout. Comme l’exemple ci-dessous où l’on apprend qu’au Japon, une IA a été battue de justesse par des créatifs humains dans une agence de communication (source). Mais pas moyen de mettre la main sur les méthodes employées et sur les réponses des créatifs et de l’IA ! Ni, bien entendu, sur les techniques employées ! On ne voit que des clips vidéos produits par une IA et par des créatifs humains.

Voici donc une proposition de modèle de documentation d’étude de cas de projet intégrant de l’IA. C’est un modèle extensif qui sera probablement rarement complètement rempli. Peu d’entreprises ont envie de documenter leurs projets avec ce niveau de détails. Mais ces études de cas peuvent être réalisées par certains éditeurs pour des projets présentés “behind closed doors”. J’ai notamment pu le constater dans une présentation de Justine Baron de Recast.ai (solution de création de chatbots) lors du séminaire Intelligence Artificielle organisé par Frenchweb lors du Cristal Festival de Courchevel les 14 et 15 décembre 2017. Lors de ce séminaire d’un jour et demi, je faisais un tour d’horizon assez large des techniques et usages de l’IA.

Qu’est-ce qui est spécifique à l’IA dans ce modèle ? C’est ce qui est en bleu ci-dessous.

Société cliente

  • Secteur d’activité.
  • Taille de l’entreprise. Bien préciser la taille de l’entité couverte par la solution. “Total” ou “Orange” n’est pas assez précis. On est souvent trompé par les études de cas qui ne précisent pas leur portée dans une très grande entreprise. Très souvent, les projets n’en concernent qu’une toute petite entité.
  • Lieu, ce qui intéressant dans le cas de déploiements internationaux.

Solution

  • Description métier du besoin et de la solution. Comment faisait-on avant ? Quelles techniques classiques étaient utilisées ? Quels étaient les surcouts engendrés par l’existant ?
  • Description technique de la solution. Quelles techniques d’IA intègre-t-elle : de l’IA symbolique (système expert, moteur de règle, logique floue), du machine learning, des réseaux de neurones simples, du deep learning, des réseaux convolutionnels, des réseaux récurrents ou à mémoire, des techniques de traitement du langage.
  • Copies d’écrans de la solution, vue de l’utilisateur. L’interface utilisateur d’une solution logicielle est aussi importante que sa fonction !
  • Schémas fonctionnels, un diagramme des flux des données avec leurs sources étant indiqué.

Données

  • Nature, volume, origine et coût des données d’entrainement puis de production. Quels capteurs les ont générées (logs Internet, objets connectés, …). Quelles données sont d’origine interne et externe à l’entreprise ? Quelles données exploitées relèvent de l’open data. Quelles sont leurs conditions d’obtention commerciales ou en open data ?
  • Fréquence de la mise à jour opérationnelle des données. Comment le modèle est-il réentrainé avec l’arrivée de nouvelles données ?
  • Taux d’erreur mesuré de la solution si applicable. Ce taux est mesuré après l’entrainement du système d’IA si celui-ci utilise du machine learning ou du deep learning.
  • Anonymisation des données exploitées le cas échéant. Est-ce que les données qui alimentent le machine learning ou le deep learning sont bien anonymisées. Normalement, c’est toujours le cas.
  • Vidéo avec témoignage et démonstration, le cas échéant.

Fournisseurs

  • Technologies. Au sens : logiciels de base (TensorFlow), d’infrastructure (Spark, Hadoop), progiciels divers et autres.
  • Prestataires de services. En indiquant leur apport dans le projet.
  • Ressources en cloud si pertinent. Et notamment, si des processeurs spécialisés (GPU ou neuromorphiques) sont utilisés, notamment pour l’entrainement d’un modèle de deep learning.

Dates

  • Début du projet.
  • Date des premiers tests opérationnels. Ce que l’on appelle un “PoC”, pour proof of concept.
  • Date de la mise en production. Et portée de la mise en production en nombre d’utilisateurs.

Economie

  • Coût du projet. Ressources humaines consommées en interne et en externe pour créer la solution. Types de compétences : développeurs, data-scientists, etc.
  • Durée d’entrainement des modèles, dans le cas de solutions à base de deep learning.
  • Nombre d’utilisateurs de la solution. Aujourd’hui et demain.
  • Retour sur investissement. C’est la partie la plus difficile à mesurer sur de nombreux projets. Il faut pouvoir y intégrer l’ensemble des coûts relatifs au projet, y compris la formation des utilisateurs.
  • Validation du projet au regard de la RGPD, la Règlementation Générale de la Protection des Données européenne qui entre en vigueur le 25 mai 2018.

J’ai aussi proposé le modèle à l’équipe du Hub#FranceAI dans le cadre de ses activités de formation des entreprises.

Est-ce complet ? Que manque-t-il à un tel modèle ?

Un volontaire pour créer une première étude de cas entièrement documentée ? Je la publierai volontiers dans ces colonnes !

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 18 décembre 2017 et mis à jour le 19 décembre 2017 Post de | Intelligence artificielle | 16274 lectures

PDF Afficher une version imprimable de cet article     

Reçevez par email les alertes de parution de nouveaux articles :

Les 9 commentaires et tweets sur “Modèle d’étude de cas de l’IA” :

  • [1] - J-Philippe Déranlot (@efficaciTIC) a écrit sur Twitter le 18 décembre 2017 :

    “Modèle d’étude de cas de l’ #iA ” de @olivez sur https://t.co/sBQhgz7qiQ pour @AssoPascaline @CINOV_IT @Lionelhovsepian @iconomie

  • [2] - Benoît Beaucourt (@BenoitBeaucourt) a écrit sur Twitter le 19 décembre 2017 :

    @olivez #proposition de #modèle d’#étudedecas sur l’#IA
    #Intelligence #Artificielle  https://t.co/FoBs6ngm91

  • [3] - Christophe Tricot (@ctricot) a écrit sur Twitter le 20 décembre 2017 :

    Modèle d’étude de cas de l’IA: une bonne trame pour les études de cas https://t.co/bPcqQ2BJqG

  • [4] - Côme Chatagnon a écrit le 20 décembre 2017 :

    Bonjour Olivier,

    Toujours un plaisir et un enrichissement de lire vos articles.

    Dans une étude de cas IA, je rajouterais néanmoins une matrice d’impacts (dont l’humain, trop souvent oublié).
    Identifier l’ensemble des répercussions sur la chaîne de valeur de l’entreprise est nécessaire avant l’implémentation et requiert des compétences et une expérience en IA non négligeables.

    Egalement, les projets IA que nous menons ont des impacts humains généralement plus forts que les projets de transformation plus “traditionnels”. Un point important à prendre en compte.

  • [5] - Olivier Ezratty a écrit le 21 décembre 2017 :

    Intéressant. Sachant cependant qu’une étude de cas n’est pas une thèse de doctorat en économie ou en sciences sociales !

  • [6] - Côme Chatagnon a écrit le 22 décembre 2017 :

    Bien entendu !
    Cependant la matrice d’impacts peut être assez rapidement complétée avec de l’expérience dans les projets IA et une bonne connaissance des métiers de l’entreprise.
    Comme vous le disiez très justement dans votre livre sur l’usage de l’IA : l’intelligence artificielle peut faire peur (syndrome de Frankenstein, disparition des emplois…). Il faut alors accompagner les entreprises et leur faire comprendre que loin de faire disparaître des postes, l’IA transforme (notion “d’augmenté”) et crée des nouveaux besoins humains.
    Bref, je pense que comme dans tout projet, l’entreprise est intéressée non seulement par la solution (très bien découpée dans votre article), mais également – et de plus en plus – par les conséquences (en particulier RH, culture d’entreprise…) sur l’ensemble de la chaîne de valeur de l’entreprise. On est là sur un grand débat : tsunami technologique, culture d’entreprise, humain vs IA… comment garder le juste milieu? (un nouvel article peut être?)

    Je vais m’essayer à votre proposition de modèle en y ajoutant la dimension impact que je décris, et vous ferais un retour quand j’aurai quelque chose de satisfaisant ! 😉

  • [7] - Stanislas Segard (@El_Stanou) a écrit sur Twitter le 9 janvier 2018 :

    Ready to share a case study on AI? here is the template https://t.co/DfX0ziqWot

  • [8] - Luc a écrit le 3 avril 2018 :

    Cher Olivier,

    Après la lecture très intéressante de la critique du Rapport Villani, il me semble que cette initiative de structuration des études de cas doive être mise à jour avec 2 aspects :
    > La contribution d’un cas à l’amélioration des capacités françaises en termes d’IA (ce que l’on a indirectement dans les moyens utilisés)
    > Un sujet qui me semble crucial : l’absence de biais ou de renforcement de biais dans les dataset d’entraînement et les algorithmes. Je travaille sur une méthode d’évaluation et de correction de ces biais, tout retour pourra l’alimenter et aller ainsi au-delà de la bienveillante “éthique”.

    Luc

    • [8.1] - Olivier Ezratty a répondu le 3 avril 2018 :

      Merci pour cet input.

      Le premier point serait optionnel car nombre d’études de cas peuvent provenir d’acteurs étrangers, soit à l’étranger, soit réalisées en France.

      Le second point est intéressant en effet.

      Sachant que pour l’instant, les études de cas courantes sont extrêmement mal documentées et que mon template d’origine relève déjà de la science fiction dans le marketing des principaux fournisseurs ! 🙂




Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
CES 2019 Jan2019
2019
2872 photos
albth
Nouveaux portraits
Expo
525 photos
albth
The Robot of the Year Nov2018
2018
35 photos
albth
Journée Innovation Défense Nov2019
2018
30 photos
albth
Mondial Auto et CES Unveiled Oct2018
2018
239 photos
albth
France Digitale Day Sept2018
2018
26 photos
albth
Universités d'Eté du MEDEF Aug2018
2018
37 photos

Téléchargements gratuits

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

Comprendre l'informatique quantique, un ebook de 342 pages pour tout comprendre sur l'informatique quantique et ses enjeux pour l'entreprise :

image

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

L'ebook Les usages de l'intelligence artificielle, novembre 2018 (522 pages)

CouvertureAvanceesIA

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Fatimazahra Moraux (HEC)
Fatimazahra est Directrice des Systèmes d’information à HEC et en charge du réseau des anciens élèves.
flow
Sarah Mauret (Talan)
Ingénieure EPF et Georgiatech en Computer Engineering, Sarah est développeuse Blockchain chez TalanLabs.
flow
Sandrine Lebeau (Coinhouse)
Sandrine est Directrice de la Conformité et de la Gestion des Risques pour la société Coinhouse (anciennement La Maison du Bitcoin). Promouvoir les Blockchains, accompagner réglementairement le développement des Cryptoactifs (Bitcoin, Litecoin...) et lutter contre les risques, un challenge au quotidien et passionnant.
flow
Amandine Doat (Ledger)
Amandine est responsable des affaires gouvernementales chez Ledger, un spécialiste de la blockchain.
flow
Kheira Benmeridja (SETL)
Kheira est Product Owner, responsable du développement d’infrastructures de marché utilisant la technologie blockchain, chez SETL.
flow
Joëlle Toledano
Joëlle est Professeure d’économie (numérique, concurrence, ..), passionnée de politique publique (régulation, fréquences, blockchain, …) et impliquée dans le développement de startups.
flow
Marie-Line Ricard (Sia Partners)
Associée au sein du cabinet Sia Partners, dans le secteur financier autour des problématiques traditionnelles et des évolutions réglementaires et dans les nouvelles technologies telles que la #Blockchain, les ICOs, et plus globalement la token economy.
flow
Francesca Gatti Rodorigo (Awaywegals)
Francesca est développeuse web full-stack, Fondatrice et CEO de awaywegals.com, une plateforme web développée sur blockchain et dédiée aux voyageuses qui sera lancée en 2020.
flow
Ying-Huei Chu (MoneyTrack)
Ying-Huei est Product Owner chez MoneyTrack, une startup dont la solution permet de tracer l'utilisation de fonds avec le blockchain, l'indemnisation d'assurance, le budget de l'état, les bourses scolaires, etc.
flow
Carole Vachet
Carole est Adjointe au Chef du Bureau Epargne et Marchés financiers de la Direction Générale du Trésor, en charge des sujets d’innovation financière.
flow
Stéphanie Flacher (Maslow Capital Partner)
Stéphanie est Directrice du département Blockchain de Maslow Capital Partner, banque d'affaires indépendante spécialisée dans l'accompagnement des entreprises européennes à forte croissance.
flow
Jeanne Dussueil
Jeanne est journaliste économie et tech, fondatrice du nouveau média GlobalizNow.com et coordinatrice de l’association Fais Ton Réseau.
flow
Liz NDouga (SII)
Liz est consultante et développeuse Blockchain chez SII (Société pour l'informatique industrielle), une entreprise de services numériques basée à Paris, implantée partout en France et à l'international. En parallèle, donne des cours sur la Blockchain à l'école d'ingénieurs ECE Paris.
flow
Elise de Préville
Elise est consultante en Data Privacy et Cyber sécurité chez KPMG.
flow
Aroussia Maadi (Orange)
Aroussia est team Manager chez Orange, en charge d'une équipe de spécialistes en bases de données à la DSI d''Orange. Elle accompagne les applications du SI dans la construction d'architectures de bases de données et assure le maintien en conditions opérationnelles des plateformes. Elle est aussi investie dans la société civile, pour l'empowerment des femmes, en particulier en Afrique.
flow
Amina Maïza
Amina est ingénieure études et développement en Java/JEE chez Vizeo Technologies.

Derniers commentaires

“Où alors, il faut arrêter avec cette connerie de parité gauchiste/féministe. Les êtres humains font des choix en fonction de leurs sensibilités et de leurs compétences naturelles. Les femmes sont plus enclin à...”
“Très bonne mise au point. J'ai toujours été un peu réticent à cette ruée vers le code, décidée souvent d'en haut par des personnes qui n'ont jamais programmé, et ne programmeront jamais. Jusqu'à ce que je...”
“Pas grand chose, à part deux points : l'expérience du dev sous toutes les formes donne de la perspective sur les progrès accomplis, leur rapidité ou leur lenteur selon les cas, et elle permet de mieux comprendre...”
“Olivier J'ai pas l'habitude de faire des commentaires sur ce terrain, mais là j'ai envie de te faire un clin d'oeil J'ai programmé après en avoir fait les analyses complètes plusieurs centaines de programmes des...”
“Tout à fait ! En critiquant le code, on confond la fonction et l'outil. C'est un peu comme si on définissait le rôle d'un médecin généraliste par sa maîtrise du...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Catégories

Tags


Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.