L’impact de l’IA sur la cybersécurité

Publié le 30 novembre 2017 et mis à jour le 1 décembre 2017 - 2 commentaires -
PDF Afficher une version imprimable de cet article

J’intervenais en ouverture du forum annuel du Cert-IST mercredi 29 novembre 2017 à Paris pour dresser un tableau général de l’impact de l’intelligence artificielle sur la cybersécurité (présentations).

Le Cert-ISTComputer Emergency Response Team – Industrie, Services et Tertiaire – est une association qui émane de Thales et qui partage les bonnes pratiques dans la cybersécurité entre ses entreprises françaises membres. On y trouve des banques, opérateurs télécoms, des services publics et divers industriels, notamment des secteurs de l’aérospatial et de la défense. Mon intervention avait été proposée par une autre association, le CLUSIF – Club de la Sécurité de l’Information Français – qui associe des offreurs de solutions de cybersécurité et des utilisateurs de ces solutions. C’est un peu l’équivalent d’un mixte Syntec Numérique + CIGREF (club des DSI de grandes entreprises) appliqué à la cybersécurité.

Mon intervention et celles auxquelles j’ai pu assister lors de ce forum me donnent donc l’occasion de faire un point rapide sur ce sujet épineux de l’impact de l’IA sur la cybersécurité. Le forum mettait très bien en évidence des aspects très pratiques et concrets des usages ou dérives de l’IA, bien loin des thèses fumeuses de la singularité.

Dans mon intervention, j’ai commencé, comme d’habitude, par segmenter les technologies de l’IA en grandes composantes : les moteurs de règles, le machine learning, le machine learning à base de réseaux de neurones, puis le deep learning qui utilise des réseaux de neurones profonds, et enfin, les agents et réseaux d’agents qui permettent d’assembler les briques de l’IA pour créer des solutions : robots, véhicules autonomes, chatbots et autres.

J’ai surtout expliqué comment fonctionnaient les réseaux de neurones profonds avec le cas de la reconnaissance d’images, puis expliqué comment ces réseaux de neurones étaient mis en œuvre côté matériel dans des processeurs spécialisés (GPU et processeurs neuromorphiques) qui font leur apparition à la fois du côté des serveurs, notamment pour les phases d’entrainement des réseaux de neurones, et du côté des objets connectés et mobiles, pour leur exécution. Avec les nouveaux risques que cela peut générer. Il y a d’ailleurs un lien étroit, dans la cybersécurité, entre l’IA, les objets connectés en tout genre et les réseaux télécoms. Ils constituent un continuum qu’il faut sécuriser de bout en bout ! Et les vulnérabilités à traiter sont très nombreuses à chacune des étapes de la chaine qui alimente les solutions exploitant des techniques logicielles à base d’IA. Cela affecte surtout celles qui fonctionnent avec des modèles probabilistes comme dans tout le périmètre du machine learning.

Processeurs et IA

J’expliquais aussi ce que l’on appelle le “biais des données”, et comment celui-ci peut amener à créer un système d’IA qui ne fonctionne pas bien dans la pratique lorsque ses données d’entrainement ne sont pas représentatives de son périmètre d’usage. L’exemple classique étant le système de reconnaissance faciale qui n’a été entrainé qu’avec des visages de blancs et qui ne reconnait donc pas les visages de couleur. Mais cet exemple, marquant, peut en illustrer d’autres.

Biais données

Au-delà de considérations humaines et éthiques, la question qui se pose est purement statistique et probabiliste : un système d’IA à base de machine learning et de deep learning ne fonctionnera bien que si les données qui ont servi à l’entrainer sont représentatives des données qui seront ensuite exploitées en production. C’est exactement le même problème que dans un sondage politique : l’échantillon utilisé doit être représentatif de la population d’ensemble. Si vous faites un sondage uniquement à Paris, dans le XVIe arrondissement, dans le 93, en Mayenne ou à Strasbourg, vous n’aurez pas un échantillon représentatif de la diversité du pays.

De nombreux systèmes d’IA sont entrainés avec des sources de données internes et externes à l’entreprise. C’est un moyen de créer des modèles pertinents avec des données complémentaires, mais cela présente aussi une surface d’attaque plus grande par des cyberpirates. Il faut donc en tenir compte dans la conception des modèles.

Donnees entrainement

Enfin, j’ai fait un rapide tour de quelques nouvelles menaces liées au machine learning et surtout au deep learning. Montrant par exemple comment on peut tromper des systèmes de vision artificielle en altérant très légèrement les images. Légèrement mais suffisamment pour modifier la reconnaissance d’images qui, dans la pratique, s’appuie sur des modèles probabilistes. Cf Understanding the limites of deep learning de Mariya Yao (mars 2017).

Reseau generatifs et attaques

J’ai aussi illustré cela avec la méthode de création de masques permettant de tromper le login FaceID de l’iPhone X. Cette méthode digne de la série et des films Mission Impossible, consiste à créer un masque 3D imitant la forme d’un visage standard, sur lequel sont plaquées les photos imprimées en 3D des yeux, de la bouche et du nez de la personne dont on veut débloquer le téléphone. Pourquoi ces parties du visage ? Parce que ce sont celles qui sont reconnues par le système de login d’Apple, et par les systèmes d’identification faciale en général. C’est là que se situent les traits qui sont transformés en paramètres mathématiques uniques permettant de reconnaitre un individu. C’est une belle vulnérabilité, mais le hack n’est tout de même pas facile à réaliser. Seuls les pirates réellement déterminés l’exploiteront et sur des cibles dites “à forte valeur”.

FaceID Hack

J’ai aussi présenté quelques exemples de “fake news” créés par des réseaux de neurones génératifs, comme le projet “face2face reenactment” qui permet d’animer un visage donné à partir de la captation de la vidéo d’une tierce personne, et celle consistant à faire parler Barack Obama avec un texte préparé. La technique utilise deux réseaux de neurones génératifs : l’un pour animer son visage et l’autre pour générer sa voix, originaire de la startup Lyrebird. Le tout est assez bluffant. Au passage, un petit truc : ces réseaux génératifs fonctionnent pour l’instant à basse résolution. Les images générées dépassent rarement 256 pixels de côté pour des raisons de puissance machine disponible. Mais avec les progrès du matériel, les faux vont probablement gagner rapidement en résolution et en réalisme.

Face2face

Juste après moi, j’ai assisté à une très bonne présentation pratique d’Anaël Beaugnon de l’ANSSI, l’agence du gouvernement qui gère la sécurité des systèmes d’information de l’Etat mais prodigue aussi des recommandations aux entreprises. Elle expliquait comment les solutions à base de machine learning étaient utilisées pour détecter des intrusions. Elle mettait bien en évidence les modèles statistiques sous-jacents et leurs limites. L’enjeu de ces systèmes est de minimiser leur détection de faux positifs ou, surtout, de faux négatifs, en raison d’effets de bord. Anaël Baugnon présentait l’outil SecuML développé à l’ANSSI qui sert à diagnostiquer un classifieur de cybersécurité. Il est en open source sur Github. J’ai au passage découvert de nombreux outils du monde de la cybersécurité en entreprise : la base de données de malwares Contagio, les outils de détection de fichiers PDF malveillants, le projet ILAB d’annotation de données par les experts pour la détection d’intrusion dont Anaël Baugnon est coauteure, ainsi que le projet ALADIN.

Sa présentation faisait bien écho à une tendance que l’on peut observer du côté des startups du secteur, qui se sont lancées dans l’utilisation du machine learning (avec ou sans réseaux de neurones) pour détecter des virus, phishings et autres intrusions. La tendance lourde du secteur consiste à créer des modèles statistiques qui détectent des “patterns” dans les logiciels suspects plutôt que de créer des bases de signature à la main. Ces systèmes exploitent essentiellement des techniques de machine learning.

Dans mon dernier ebook “Les usages de l’intelligence artificielle” publié en octobre 2017 (gratuit, et déjà téléchargé plus de 14 500 fois), je faisais ainsi un inventaire page 177 de quelques startups de ce secteur utilisant des modèles de machine learning : “Les tentatives de phishing sont détectées par GreatHorn (2015, $8,83m) ou avec Lookout (2007, $282m) qui sécurise les mobiles avec un modèle prédictif. Les malwares sont détectés avec du machine learning par Cylance (2012, $177M). L’israélien DeepInstinct (2014, $32M) protège les systèmes contre les failles de sécurité récentes (“zero day threats”). Ce serait la première startup à exploiter le deep learning – avec des GPU Nvidia – tandis que la plupart utilisaient du machine learning jusqu’à présent pour faire de l’analyse multifactorielle des menaces en lieu et place de l’utilisation de bases de signatures de virus. Dans le même genre, Recorded Future (2009, $33M) utilise le machine learning pour détecter les menaces de sécurité en temps réel. Des startups comme Onfido (2012, $30M) vérifient l’identité de clients de service en ligne. C’est de la détection de fraude basée sur du machine learning et du prédictif. L’israélien Fortscale (2012, $32M) identifie de son côté les menaces internes dans les entreprises, avec sa solution User & Entity Behavioral Analytics (UEBA). Il va détecter des comportements suspects comme la copie de fichiers de grande taille sur des clés USB ! Dans les pays où ce genre de surveillance est autorisée !”.

Il faudrait aussi ajouter les outils qui permettent d’analyser les failles de sécurité de ses propres solutions logicielles. Les offres sont abondantes dans ce domaine. On peut notamment citer le framework open source Frame-C développé par le CEA-LIST, l’institut de recherche sur les systèmes numériques intelligents du CEA, qui s’appuie directement sur des méthodes formelles à base d’IA.

Dans la pratique, les modèles doivent cependant être entraînés par des bases de données associant de nombreux logiciels et leur niveau de menace. Vincent Letoux d’Engie insistait dans sa présentation sur le besoin de ne jamais évacuer l’Homme des processus de décision dans ces systèmes. C’est un point de vue de bon sens. De son côté, Dimitri Tromboff de Thales expliquait comment le machine learning était utilisé dans la pratique.

D’autres interventions portaient sur des sujets de cybersécurité éloignés de la thématique de l’IA, comme un post-mortem de la lutte contre les ransomwares. Il y avait notamment celle du dynamique Eric Barbry, avocat du cabinet d’Alain Bensoussan que l’on ne présente plus. Il expliquait en 45 minutes bien denses les enjeux de l’entrée en vigueur de la directive RGPD le 25 mai 2018, portant sur la protection des données personnelles et la vie privée. Les entreprises vont avoir du pain sur la planche ! Il existe d’ailleurs une véritable interaction entre la RGPD et l’IA, notamment autour des notions du droit à l’oubli et de celui de la portabilité des données. Lorsque vos données personnelles ont servi à entrainer un réseau de neurones, comment fait-on pour faire oublier votre existence à ce réseau de neurones ? La question est mathématique et logique autant que juridique !

Bref, comme dans tous les métiers du numérique, la cybersécurité n’échappe pas à la vague de l’IA. L’IA amène à revoir les raisonnements, elle change les méthodes, et permet de se remémorer que l’IA ne fonctionne pas toute seule. Elle est alimentée et corrigée en permanence par des données d’origine humaine.

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 30 novembre 2017 et mis à jour le 1 décembre 2017 Post de | Intelligence artificielle, Logiciels, Logiciels libres | 18334 lectures

PDF Afficher une version imprimable de cet article          

Reçevez par email les alertes de parution de nouveaux articles :

Les 2 commentaires et tweets sur “L’impact de l’IA sur la cybersécurité” :




Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
L'Echappée Volée Jul2018
2018
297 photos
albth
Nouveaux portraits
Expo
511 photos
albth
Lancement Fondation Femmes Numériques Jun2018
2018
112 photos
albth
USI Jun2018
2018
195 photos
albth
Web2day Nantes Jun2018
2018
327 photos
albth
CEA Saclay Daniel Estève Jun2018
2018
23 photos
albth
French Tech Station F May2018
2018
21 photos

Téléchargements gratuits

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

L'ebook Les usages de l'intelligence artificielle, octobre 2017 (362 pages)

CouvertureAvanceesIA

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Elise de Préville
Elise est consultante en Data Privacy et Cyber sécurité chez KPMG.
flow
Aroussia Maadi (Orange)
Aroussia est team Manager chez Orange, en charge d'une équipe de spécialistes en bases de données à la DSI d''Orange. Elle accompagne les applications du SI dans la construction d'architectures de bases de données et assure le maintien en conditions opérationnelles des plateformes. Elle est aussi investie dans la société civile, pour l'empowerment des femmes, en particulier en Afrique.
flow
Amina Maïza
Amina est ingénieure études et développement en Java/JEE chez Vizeo Technologies.
flow
Maud Franca (CDC)
Maud est Directrice Adjointe du Programme des Investissements d’Avenir en charge de l’économie numérique, Banque des Territoires, Groupe Caisse des dépôts (CDC). Membre de la cellule nationale French Tech, mentor et aux boards de startups.
flow
Chloé-Agathe Azencott
Chloé-Agathe est chargée de recherche au Centre de Bioinformatique de MINES ParisTech et de l'Institut Curie. Cofondatrice de la branche parisienne du meetup Women in Machine Learning and Data Science.
flow
Béatrice Moulin et Clara Deletraz (Switch Collective)
Béatrice et Clara sont cofondatrices de la startup Switch Collective.
flow
Laurence Devillers
Laurence est chercheur et Professeur en Intelligence Artificielle à Sorbonne Université/LIMSI-CNRS, équipe de recherche "Dimensions affectives et sociales dans les interactions parlées". Membre du comité de réflexion sur l’éthique du numérique (CERNA) d’Allistène, Auteure de « Des Robots et des Hommes : mythes, fantasmes et réalité », Plon 2017.
flow
Sophie Viger
Sophie est Directrice de la Web@cadémie, de la Coding Academy by Epitech et directrice pédagogique du Samsung Campus.
flow
Laura Jacquemod
Laura est consultante digitale au sein de Nexworld, accompagnant notamment ses clients dans l'intégration d'Intelligence Artificielle, comme dans un chatbot.
flow
Anais Barut (Damae Medical)
Anaïs est co-fondatrice et présidente de DAMAE Medical, elle est en charge de la stratégie globale de la société ainsi que des problématiques marketing et financières. La startup développe un dispositif médical permettant au dermatologue au sein même de son cabinet d’acquérir des images d’anomalies de la peau, en profondeur, de manière non invasive. #entrepreneuse
flow
Virginie Mathivet
Virginie est ingénieure en innovation spécialisée en Intelligence Artificielle (IA) et objets connectés (IoT), chargée de Recherche et Développement dans l’équipe innovation de TeamWork (InTW’IT), société de services du numérique.
flow
Catherine Bocquet
Catherine est fondatrice et dirigeante de SFI, une ESN de 25 personnes. Aussi co-présidente de Digital League, Cluster des entreprises du numérique en Auvergne Rhône-Alpes. Membre de l’association Femmes & Business et du Pôle Femmes à la CPME Loire. #entrepreneuse
flow
Nicole Sgro
Nicole est co-fondatrice et présidente de la société Fingerprint Technologies, opérateur télécom et intégrateur de services numériques hébergés, membre du cluster numérique Digital League. #entrepreneuse
flow
Frédérique Segond
Frédérique est Directrice de l'Innovation et des Partenariats pour l'Université Grenoble Alpes, Professeur Associée à l'Institut National des Langues et des Cultures Orientales, à Paris, où elle enseigne la représentation des connaissances. Co fondatrice et Présidente de l'Association ScientiMix pour promouvoir la mixité dans les Sciences et les technologies.
flow
Sonia Mokhtar
Sonia est chercheuse au CNRS en informatique au Laboratoire d'Informatique en Image et Systèmes d'Information (LIRIS). Responsable de l'équipe de recherche DRIM: Distribution, Recherche d'Information et Mobilité. Spécialiste des systèmes distribués et de la protection des données personnelles.
flow
Nathalie Mancuso
Nathalie est Directrice Générale du site de e-commerce Wanimo.com, une animalerie en ligne 100% française.

Derniers commentaires

“Probablement, même si je n'ai pas encore vu d'étude de cas dans ce créneau......”
“Et les applications en Supply Chain? Cela se limitera à tous les sujets d'optimisation existants déjà, mais en temps réel par...”
“En te lisant, cela a l'air si simple ! Va bien falloir plusieurs lecteurs pour que j'assimile tout cela ! ps : petite coquille dans le paragraphre "Types de qubits". - voir utilisés en production...”
“J’utilise depuis longtemps pour acheter des followers instagram et acheter des likes instagram. Je n’ai pas de problèmes avec ce type de service, après chacun fait comme il veut...”
“Merci pour toutes ces infos! Une mine d'or. Petite coquille dans le paragraphe créateur : qui vont pour une bonne part d’expatrier aux USA qui vont pour une bonne part s’expatrier...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Catégories

Tags


Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.