De l’astronomie à l’entrepreneuriat : interféromètres

Publié le 18 juillet 2017 et mis à jour le 27 août 2017 - Commenter -
PDF Afficher une version imprimable de cet article
  

Voici la suite des devoirs de vacances dédiés à l’astronomie avec de nombreux épisodes portant sur ses outils de travail. Après une première partie dédiée aux dimensions de l’Univers, et les trois suivantes consacrées aux télescopes optiques terrestres puis un aux radiotélescopes, nous allons passer aux interféromètres radio.

Les interféromètres radio utilisent des antennes fixes comme des dipôles ou des paraboles orientables. Leur résolution angulaire est liée à la distance maximale entre les éléments d’où une incessante course à l’échalote dans la dimension de ces interféromètres qui associent maintenant des radiotélescopes répartis un peu partout sur la planète quand ce n’est pas également dans l’espace. Leur capacité de collecte d’ondes dépend de la surface totale des antennes. La création d’images par interférométrie n’est pas triviale à expliquer. Elle s’appuie sur des transformées de Fourier inverses pour la reconstitution d’images à partir des signaux récupérés par les capteurs des différents radiotélescopes ou antennes utilisés. Cela nécessite de grandes puissances de calcul, centralisées généralement dans des data centers spécialisés.

Radio Telescope principles

Les interféromètres présentent des économies d’échelle que l’on ne trouve pas dans les radio-télescopes et télescopes optiques traditionnels. En effet, ceux-ci sont réalisés à partir d’unités en générales identique ce qui permet une industrialisation à petite échelle de leur fabrication alors que la grande majorité des télescopes à un seul miroir primaire ou antenne principale sont uniques en leur genre.

Les grands interféromètres

C’est parti pour les visites sachant que je ne vais pas parcourir tous les interféromètres du monde, mais seulement quelques-uns parmi les plus importants ou les plus impliqués dans des découvertes marquantes.

Mills Cross (Australie, 1954) avec ses deux bras de 450 d’antennes arrangées orthogonalement. Il a notamment servi à faire un premier inventaire de milliers de sources radio que les astronomes et astrophysiciens ont pu interpréter seulement des décennies plus tard. Il a été fermé en 1991.

Mills Cross

One Mile Telescope (UK, 1964) est un interféromètre à base de trois radio-télescopes paraboliques dont l’un était déplaçable et opérant dans les bandes de 1407 MHz et 408 MHz. Il a été en fonctionnement pendant une vingtaine d’années et a permis le catalogage des sources radio dites 5C (pour Fifth Cambridge Survey).

IMG_0820_zps6b23ed6b
Westerbork Synthesis Array Telescope (Pays-Bas, 1970) est un interféromètre à synthèse d’ouverture qui comprend 14 antennes paraboliques de 25 mètres alignées sur 2,7 km. 4 des 10 télescopes peuvent être déplacés sur un rail, les autres restant fixes. Le télescope a été upgradé entre 1995 et 2000 puis après 2013 dans le cadre du projet APERTIF (APERture Tile In Focus) qui remplaçait les détecteurs par des “focal plane arrays” de 8×8 éléments, des matrices de capteurs élargissant le champ de vision pour l’aider dans la recherche d’hydrogène et de pulsars dans la bande de fréquences 1300-1700 MHz. Le WSAT opère dans les fréquences allant de 120 MHz à 8,3 GHz. Sa résolution spectrale est de 8092 lignes. Le télescope est opéré par ASTRON, la fondation hollandaise de recherche en astronomie, très active en Europe. Il faut dire que nombre de pionniers de la radio-astronomie étaient hollandais comme Jan Oort (qui a donné son nom au nuage de matière après l’héliosphère) et Hendrik Van Der Hulst (celui qui prédit l’émission radio à la fréquence de 1420 MHz).

Westerbork Synthesis Array Telescope
Very Large Array (USA, 1976) est un interféromètre spécialisé dans les ondes centimétriques situé au Nouveau Mexique et à 2124 m d’altitude. Il comprend 25 antennes paraboliques organisées sur une forme en Y installées sur des rails et permettant leur déplacement. Le VLA a notamment permis la détection de disques d’accrétion planétaires, de trous noirs et de filaments magnétiques au centre de la Voie Lactée. Il est géré par la NRAO qui dépend de la NSF.

Very Large Array

Voici un exemple d’image composite réalisée avec télescope optique (étoiles) et le VLA (nuage bleu en couleur artificielle) de la nébuleuse W50 (Manatee).

VLA Manatee Nebula (W50)

Interféromètre du Plateau de Bure (France, 1990) de l’IRAM, un réseau de six antennes de 15 mètres de diamètre dans les Hautes-Alpes françaises. Situé à 2550 mètres d’altitude dans les Hautes-Alpes, cet interféromètre comprend 6 antennes paraboliques de 15 mètres installées sur deux rails orthogonaux étalés sur 760 m et équipées de récepteurs de haute sensibilité dans les ondes millimétriques. Cet instrument a permis diverses découvertes comme celle de flots bipolaires de la proto-étoile HH 211, du disque circumbinaire GG Tauri, de l’étoile TT Cygnus, de la galaxie M51, et de la galaxie SMM J16359 située à 5 milliards d’AL de la Terre.

Interféromètre du Plateau de Bure

VLBA (USA, 1993) est un interféromètre constitué d’une dizaine de radio-télescopes identiques de 25 m situés sur l’ensemble du territoire américain et qui sont pilotés à partir du Nouveau Mexique. Il met en œuvre de la VLBI : Very Long Baseline Interferometry, soit de l’interférométrie à longue distance. La distance entre les antennes les plus éloignées est de 8611 km. La construction des antennes s’est étalée entre 1986 et 1993 pour un total de $85m, ce qui est somme toute modeste au regard de nombreux autres instruments d’astronomie. Les données enregistrées sur chaque télescopes sont horodatées par une horloge atomique, permettant ensuite leur synchronisation parfaite pour les calculs d’interférométrie. Cet instrument a notamment détecté les jets sortant de la galaxie M87 (source) et, après une dizaine d’années de recherche, deux trous noirs super-massifs binaires, dénommés 0402+379, issus de la fusion de deux galaxies. Cette détection s’est appuyée sur l’analyse de la fréquence de signaux dans les bandes centimétriques de 5, 8, 16 et 22 GHz (1,36 à 6 cm) sur une douzaine d’années.

LOFAR (Europe, 2010), ou LOw Frequency ARray, est un ensemble d’interféromètres à base de grilles d’antennes plates. Il regroupe une aire d’antennes de plus de un kilomètre carré rassemblant 50 000 antennes regroupées dans 48 stations, réparties aux Pays-Bas, en Allemagne, en France (sur le site de Nancay), au Royaume Uni et en Suède. Elles captent des ondes radio courtes émises par les gaz froids de formation des exo-planètes, des étoiles et des galaxies. Les données collectées à environ 3 Gbits/s sont envoyées par fibre optique vers un superordinateur basé aux Pays-Bas. Deux types d’antennes sont utilisés : des Low Band Antenna sur les fréquences 15-80 MHz et des High Band Antenna sur 120-240 MHz.

LOFAR

ALMA (Chili, 2014) ou Atacama Large Millimeter Array détecte les ondes millimétriques allant de 0,3 à 3,5 mm. Il est situé dans le désert d’Atacama à 5000 mètres d’altitude et associe l’Europe, les USA, le Japon et le Chili. Il opère dans les ondes millimétriques et submillimétriques. Il comprend 54 antennes de 12 m de diamètre et 12 antennes de 7 m de diamètre. ALMA a déjà détecté le nuage moléculaire Orion, puis le quasar 3C84 avec ses deux premières antennes de 12 mètres de diamètre qui sont séparées de 159 m. Puis HL Tau et, en 2016, le système planétaire en formation HL Tauri qui est situé à 450 AL du Soleil. ALMA sera complété par le Giant Magellan Telescope qui se focalisera sur la poussière chaude et le disque intérieur de galaxies en formation tandis qu’il étudiera les gaz froids de la périphérie de ces disques. ALMA génère plus de 6 Mo/s pendant ses observations et 10 To d’archives d’images traitées par an !

Atacama Large Millimeter Array

ALMA a été impliqué dans la découverte récente de molécules organiques comme le méthanol qui sont des précurseurs d’acides aminés dans un disque d’accrétion autour d’une étoile en formation située à 1300 années lumière dénommée Herbig-Haro (HH) 212 (source). L’image ci-dessous est une composite obtenue avec ALMA et le Very Large Telescope de l’ESO (examiné dans cette partie).

ALMA and VLA images of Herbig-Haro 212

Voici un autre exemple d’image générée par ALMA en 2012, celle de d’une étoile géante rouge, R Sculptoris, située à 1500 AL dans la Voie Lactée, qui est dotée d’une enveloppe sphérique extérieure et d’une spirale intérieure [source].

R Sculptori ALMA

VLBI (monde, en cours) est un programme d’interférométrie qui associe une grande variété de radio-télescopes situés sur tous les continents. Cela lui permet de capter les ondes radio avec une précision inégalée qui dépasse celle des meilleurs télescopes optiques.

Slide9

Murchison Wildefield Array Gleam (Australie, 2013) est un réseau de 128 ensembles d’antennes bipolaires étalées sur 14 km2 totalisant 4000 antennes. Il a déjà catalogué 307 456 galaxies entre 2013 et 2014 dans le cadre du programme GLEAM ainsi que le centre de la voie lactée en ondes radio après avoir collecté 600 To de données. L’intégration des données issues de ces nombreuses antennes demande beaucoup de puissance de calcul. Ci-dessous, en bas, une vue redressée du centre de la Voie Lactée.

Slide29

Slide30

High-Altitude Water Cherenkov (USA, 2017) est un interféromètre réalisé avec 300 réservoirs d’eau au Mexique. Il sert à détecter les rayons gamma à très haute énergie émis par des pulsars et par les gaz situés entre les étoiles. Les rayons gamma sont situés à l’opposé des ondes radio dans le spectre électromagnétique. Dans leur version à très haute énergie, ils permettent de détecter l’Univers dit relativiste, lié à ses phénomènes les plus extrêmes après le big bang.

High-Altitude Water Cherenkov

SKA (USA, 2012-2030), ou Square Kilometric Array, s’appuiera sur quatre mille antennes paraboliques de 15 m dans les fréquences moyennes et 200 000 mètres carrés d’antennes en réseau dans les basses fréquences totalisant un km2 de surface collectrice d’ondes radio répartis sur une distance de 3 000 kilomètres, étant installé en Afrique du Sud et en Australie. L’objectif est d’obtenir une puissance de captation cinquante fois supérieure à celle des plus puissants radiotélescopes actuels, dans les fréquences 100 MHz à 25 GHz, extensible à 60 MHz -35 GHz. Il permettra de scanner différentes portions du ciel en simultané. Le déploiement de ces antennes se fera en différentes phases étalées jusqu’à la fin de la décennie 2020. Les premières observations pourraient démarrer en 2020. Ce projet international associe l’Afrique du Sud, l’Australie, le Canada, la Chine, l’Inde, l’Italie, la Nouvelle-Zélande, la Suède, les Pays-Bas et le Royaume-Uni. La France est l’un des pays observateurs du projet.

L’un des défis du SKA sera de collecter et gérer les péta-octets qui sont générés par seconde et exa-octets par heure! Ils seront traités par plus d’une centaine de serveurs.

La recherche d’astéroïdes

La détection d’astéroïdes pouvant impacter la Terre est aussi au programme des radio-télescopes. C’est l’un des rôles dévolus au Goldstone Deep Space Communications Complex de la NASA qui comprend cinq antennes radar normalement dédiées à la communication avec les satellites et sondes spatiales. Quatre antennes font 34 m et l’une d’entre elles, la DSS-14 construite à la fin des années 1960 pour le programme Apollo, fait 70 m. Ces antennes gèrent les télécommunications avec une trentaine de satellites et sondes.

DSS-14 (ci-dessous) a servi aux communications avec les vaisseaux lunaires du programme Apollo. Elle sert aussi aux communications avec les sondes Voyager qui sont maintenant sorties de l’héliosphère. Elle utilise les micro-ondes dans les bandes S (2,29 à 2,30 GHz), X (8,40 à 8,50 GHz) et la bande Ka (31,8 – 32,3 GHz) qui est aussi utilisée par les satellites de diffusion de TV et d’Internet pour les zones faiblement denses. Elles émettent des signaux vers les vaisseaux spatiaux.

Goldstone DSS-14 (credit Hal Janzen)

L’antenne DSS-14 héberge des instruments dédiés au Goldstone Solar System Radar qui explore les planètes et autres objets du système solaire. Il s’appuie sur un émetteur et un récepteur de la bande X (8500 MHz) de l’antenne, lui permettant de jouer le rôle de radar actif. En plus des planètes du système solaire, il permet de visualiser les astéroïdes et comètes avec une résolution de quelques mètres, complétant l’imagerie issue de satellites tels que Dawn. Voici un exemple de vidéo d’astéroïde générée avec DSS-14 !

Un autre projet va dans le même sens, avec le nom prophétique de KaBOOM pour “Ka-Band Objects Observation and Monitoring Project”. Il s’appuie sur un réseau de radars permettant de détecter des Near Earth Objects plus éloignés et avec une meilleure résolution.

Les radars peuvent aussi servir à détecter et cartographier les objets en orbite proche de la Terre issus de satellites. Ceux-ci présentent un risque pour les vols habités et non habités en orbite basse. Sans compter les risques côté pollution une fois qu’ils retombent sur Terre, surtout s’ils ne brulent pas lors de leur rentrée dans l’atmosphère.

Ce ce jour, plus de 17 000 objets d’origine humaine sont en orbite autour de la terre, dont plus de 1400 satellites opérationnels. En 2013, plus de 170 millions de débris divers de moins de 1 cm, 670 000 de 1 à 10 cm et 29 000 encore plus grands avaient été identifiés. La concentration de ces débris est maximale autour de 800/900 km d’altitude. Cela tombe bien car l’ISS (International Space Station) est à 400 km d’altitude !

______________________________

Dans les épisodes suivants, nous allons décortiquer les nombreux télescopes spatiaux et en particulier l’énorme James Webb Space Telescope.
_____________________________

Voici les pointeurs sur les douze épisodes de cette série dans leur ordre de parution :

De l’astronomie à l’entrepreneuriat : l’Univers
De l’astronomie à l’entrepreneuriat : télescopes terrestes
De l’astronomie à l’entrepreneuriat : grands télescopes
De l’astronomie à l’entrepreneuriat : télescopes géants
De l’astronomie à l’entrepreneuriat : radiotélescopes
De l’astronomie à l’entrepreneuriat : interféromètres
De l’astronomie à l’entrepreneuriat : télescopes spatiaux
De l’astronomie à l’entrepreneuriat : télescopes spatiaux dans le visible
De l’astronomie à l’entrepreneuriat : télescopes spatiaux dans l’infrarouge
De l’astronomie à l’entrepreneuriat : télescopes spatiaux dans les rayons gamma, X et UV et ondes radio
De l’astronomie à l’entrepreneuriat : les exoplanètes
De l’astronomie à l’entrepreneuriat : entrepreneurs

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 18 juillet 2017 et mis à jour le 27 août 2017 Post de | Actualités | 12155 lectures

PDF Afficher une version imprimable de cet article     

Reçevez par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img


Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Last posts / derniers articles

Quantum Energy Initiative

Discover the mission of the "Quantum Energy Initiative" which aims to develop a systemic approach to keep in check quantum technologies energetic footprint and more generally their physical resource cost. It is a collective effort gathering research organizations and industry vendors all around the world.

image

Free downloads

Understanding Quantum Technologies 2022, a free 1128 pages ebook about all quantum technologies (computing, telecommunications, cryptography, sensing):

image

Free downloads

Understanding Quantum Technologies 2022 Short version, a 24 pages with key takeaways from the eponymous book.

image

Voir aussi la liste complète des publications de ce blog.

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
QFDN
Expo
791 photos
albth
Remise Légion d'Honneur Philippe Herbert Jul2021
2021
15 photos
albth
Vivatech Jun2021
2021
120 photos
albth
Visite C2N Palaiseau Mar2021
2021
17 photos
albth
Annonce Stratégie Quantique C2N Jan2021
2021
137 photos
albth
Maison Bergès Jul2020
2020
54 photos
albth
Grenoble Jul2020
2020
22 photos

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Elle circule dans différentes manifestations. L'initiative rassemble près de 800 femmes du numérique (en janvier 2022) et elle s'enrichit en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentées au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Gaëlle Rannou
Gaëlle est étudiante à 42 Paris et tutrice de l’équipe pédagogique (en 2021).
flow
Jehanne Dussert
Jehanne est étudiante à l'école 42, membre d'AI For Tomorrow et d'Open Law, le Droit ouvert. Elle est aussi fondatrice de "Comprendre l'endométriose", un chatbot informant sur cette maladie qui touche une personne menstruée sur 10, disponible sur Messenger. #entrepreneuse #juridique #santé
flow
Chloé Hermary
Chloé est fondatrice d'Ada Tech School, une école d'informatique alternative et inclusive dont la mission est de former une nouvelle génération de talents diversifié à avoir un impact sur le monde. #entrepreneuse #formation
flow
Anna Minguzzi
Anna est Directrice de Recherche au CNRS au Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC) à Grenoble. #quantique
flow
Maeliza Seymour
Maeliza est CEO et co-fondatrice de CodistAI, qui permet de créer une documentation du code informatique par une IA.
flow
Candice Thomas
Candice est ingénieure-chercheuse au CEA-Leti, travaillant sur l’intégration 3D de bits quantiques au sein du projet Quantum Silicon Grenoble. #recherche #quantique
flow
Stéphanie Robinet
Stéphanie dirige un laboratoire de conception intégrée de circuits électroniques du CEA-Leti qui travaille sur des systèmes sur puces intégrés, des interfaces de capteurs, des interfaces de contrôle de qubits et de la gestion intégrée de l'énergie. #recherche #quantique
flow
Sabine Keravel
Sabine est responsable du business development pour l’informatique quantique chez Atos. #quantique #IT
flow
Céline Castadot
Céline est HPC, AI and Quantum strategic project manager chez Atos.
flow
Léa Bresque
Léa est doctorante, en thèse à l'institut Néel du CNRS en thermodynamique quantique, sous la direction d'Alexia Auffèves (en 2021). #quantique #recherche
flow
Emeline Parizel
Emeline est chef de projet web et facilitatrice graphique chez Klee Group, co-fondatrice TEDxMontrouge, gribouilleuse à ses heures perdues, joue dans une troupe de comédie musicale, co-animatrice de meetups et est sensible à l’art et à la culture. #création
flow
Elvira Shishenina
Elvira est Quantum Computing lead chez BMW ainsi que présidente de QuantX, l'association des polytechniciens du quantique. #quantique
flow
Marie-Noëlle Semeria
Marie-Noëlle est Chief Technology Officer pour le Groupe Total après avoir dirigé le CEA-Leti à Grenoble. #recherche
flow
Gwendolyn Garan
Gwendolyn est travailleuse indépendante, Game UX Designer, Game UX Researcher (GUR) et 2D Artist pour le jeu vidéo, étudiante en Master 2 Sciences du Jeu, speaker et Formatrice sur l'autisme et la neurodiversité, l'accessibilité et les systèmes de représentation dans les jeux vidéo. #création #jeuvidéo
flow
Alexandra Ferreol
Alexandra est étudiante d'un bachelor Game Design à L'Institut Supérieur des Arts Appliqués (année scolaire 2019/2020) #création #jeuvidéo
flow
Ann-elfig Turpin
Ann-elfig est étudiante en deuxième année à Lisaa Paris Jeux Vidéos (Technical artist, 3D artiste), année scolaire 2019/2020. #création #jeuvidéo

Derniers commentaires

“Thanks for this nice feedback Sangyun! I'm indeed updating the book for significant events until the end of the year. Then start over preparing the next...”
“Dear Oliver, I really appreciate your hard works to publish and update it. and most of all, sharing knowledges to the publics for free. All the best! Best...”
“Merci pour ton retour Julien. Mon commentaire sur le nombre d'algorithme était lié à une autre partie du livre, je ne sais plus où. Il y a en effet deux points clés : les algorithmes quantiques remplacent...”
“Cher Olivier, merci pour ta critique très juste et constructive. Bon, juste pour te taquiner, pour ta critique sur le nombre d'algorithme, j'ai quand même écrit p.146 : "Depuis les idées pionnières de...”
“Indeed. It seems a lab experiment more than a full fledged quantum computer. This 2-qubit gate fidelity was generated with 2 qubits. With readout fidelities of 88% and a T1 of 13 µs for one of the qubit. Still way to...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Catégories

Tags


Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.