A la découverte de la “fab” chez STMicroelectronics : 3

Publié le 29 décembre 2014 et mis à jour le 30 décembre 2014 - 3 commentaires -
PDF Afficher une version imprimable de cet article
  

Voici la troisième et dernière partie de mon compte-rendu d’une visite au cœur de l’une des usines les plus modernes de France : les unités de production de Crolles et Grenoble de STMicroelectronics, effectuée le 3 décembre 2014.

La première partie décrivait la filière française des semiconducteurs et les activités de STMicroelectronics. La seconde portait sur la Fab300 de Crolles et les procédés de fabrication des chipsets. Ici, nous passons en revue deux unités de production : le packaging et le test, situées à Grenoble.

Grenoble – unité de packaging

L’unité de packaging de Grenoble que j’ai pu visiter n’est pas une unité de production de volume. Elle est dédiée au développement des procédés d’assemblage et à l’assemblage des derniers prototypes des circuit qui sortent des fabs de Crolles. Elle fonctionne donc à petite échelle par rapport aux unités de back-end situées en Asie, à Malte ou au Maroc.

J’ai pu y prendre des photos. On y rentrait en se couvrant d’une combinaison, comme pour la Fab300 de Crolles, la salle étant aussi sous atmosphère contrôlée.

Les étapes de packaging sont assez nombreuses :

  • On commence par polir la face arrière des wafers silicium dans trois machines utilisant des grains différents. L’objectif est d’adapter l’épaisseur du wafer au boitier utilisé. Le wafer peut perdre au passage jusqu’aux quatre cinquièmes de son épaisseur. C’est particulièrement utile pour les circuits destinés à des appareils mobiles et avec des cartes mères miniaturisées à l’extrême.
flow

L'une des machine de polissage de wafers qui va diminuer leur épaisseur pour s'adapter au packaging du produit final.
  • Les wafers sont ensuite découpés avec des machines de découpe automatique.
  • Puis chaque puce est extraite du wafer pour être posée sur un substrat organique à plusieurs couches conductrices, l’adhésion étant faite à l’aide d’une colle qui sera ensuite cuite dans une étuve.
flow

Le four qui va cuire la colle reliant le chipset à son package.
  • Une machine va ensuite souder de minuscules fils de cuivre ou d’argent entre le substrat et la puce au niveau des contacts métalliques de celle-ci.
flow

La machine de précision qui va souder les fils de contact entre le chipset et le packaging.
  • Puis le boitier est moulé de façon à protéger la puce.
  • Celui-ci est ensuite marqué au laser avec sa référence et son identifiant.

Il existe plusieurs sortes de packaging selon la destination du produit et notamment les PGA, BGA et PLCC. Cette unité de packaging peut tous les fabriquer en fonction des besoins.

  • PGA (Pin Grid Array), avec un support carré et des pins qui se connectent à un socket. C’est le format habituel des processeurs Intel pour PC desktop.
  • BGA (Ball Grid Array), avec un support carré et une matrice de billes de soudure destinée à être directement soudées sur une carte mère. Il est utilisé dans les set-top-box et les mobiles. On distingue le BGA FC (Flip Chip) où la puce est connectée au substrat du package par des bumps et le BGA WB (Wire Bond) où la puce est connectée aux substrats du package via des fils en or, cuivre ou argent.

BGA FC and WB

  • PLCC (Plastic Leaded Chip Carrier), avec un boitier plastique et des pattes sur le côté qui est généralement monté en surface sur les circuits imprimés.
  • Céramique : des packages utilisés pour les composants RF ou pour des tests, où la puce est posée sur un substrat en céramique isolante, avec des pins sur le côté qui s’insèrent dans les trous d’une carte mère.
flow

Des exemples de packaging céramique qui servent souvent à créer des circuits de tests.
  • Packages spécifiques pour les puces optiques (cf cette présentation du CEA-LETI qui en explique les enjeux).

Grenoble – unité de tests

Derrière l’unité de packaging se situe une unité de tests qui à assurer le test des wafers qui viennent tout juste de sortir de la Fab et puis ensuite le test des chipsets une fois intégrés dans leur package.

Le premier test appelé EWS (Electrical Wafer Sorting) sert à éliminer les chipsets non conformes sur les wafers dès leur sortie de l’usine et avant leur mise en boîtier.

Il se trouve qu’environ 3% de la surface des chipsets est dédiée aux tests. Une unité de pilotage des tests intégrée dans les chipsets est reliée par une couche métal dédiée à l’ensemble des modules fonctionnels du chipset. Cela permet à cette unité de gérer des tests unitaires de chaque module.

Ce test des chipsets lorsqu’ils sont encore sur leur wafer donne des indications à la fab sur la qualité des wafers et l’éventuelle dérive de son procédé. En identifiant les puces puces défaillantes, on fait ensuite l’économie de leur mise en boitier.

Le test EWS va stresser chaque puce en l’alimentant entre 80 % et 120 % de sa tension nominale et vérifier que les signaux de sortie sont bien conformes pour des signaux d’entrés donnés.

Les tests sont réalisés à l’aide d’une énorme machine de tests qui se connecte sur le circuit via une carte de tests (pour les pièces packagées) ou une carte à pointes (“probe cards” pour les wafers et l’EWS, exemple ci-dessous). La carte intègre des micro-contacteurs se connectant sur le circuit. Cette tête de 25 cm de diamètre peut couter jusqu’à 50K€ car elle est spécifique à chaque chipset testé.

Technoprobe

Les “probe cards” de tests comprennent un circuit imprimé avec « des pointes » en tungstène-rhénium qui vont rentrer en contact avec la surface de la puce et assurer un contact électrique avec sa dernière couche de métallisation. Les pointes sont des tiges métalliques de 15 à 20 micromètres de diamètre à leur extrémité. Une carte de tests peut contenir jusqu’à plusieurs centaines de ces pointes. Voir cette vidéo qui explique le fonctionnement de cette étape de test de manière animée.

La babasse de gestion des tests comprend une batterie d’ordinateurs qui pilotent les tests en passant par le module de tests du circuit. Si le test était réalisé au niveau fonctionnel avec un système d’exploitation classique genre Android, il durerait de longues minutes ! Ici, il est réalisé en quelques secondes par puces sachant qu’il y en a des centaines sur un wafer, selon leur taille.

L’unité de tests que j’ai visitée utilise aussi des machines de tests dotées de colonnes optiques dédiées aux capteurs photos.

Conclusion

Quand on visite de telles fabs, on est évidemment frappé d’un point clé sur les équipements : ils sont très rarement français. Le matériel est essentiellement américain (Applied Materials), hollandais (ASML, AMSI) ou Japonais (Disco). Seules quelques rares machines de tests et de mesure sont françaises. C’est à l’image de l’industrie française qui n’a jamais été très bonne dans le secteur des machines-outils.

J’ai aussi fait un tour rapide dans une grande salle de réunion qui servait pour l’occasion de salle de tests d’intégration pour le test fonctionnel de chipset de set-top-box. Il s’agissait visiblement de préparer les démonstrations des derniers chipsets prévues pour le CES de Las Vegas début janvier.

flow

Le showroom de STMicroelectronics à Grenoble est destiné aux salariés et au grand public, pour expliquer comment son fabriqués les composants et dans quels produits on les retrouve ensuite.

A l’entrée de l’un des bâtiments du site de Grenoble se trouve un nouveau showroom pour la présentation au grand public et aux salariés des processus de fab ainsi que des produits finis qui utilisent des composants d’origine ST, et notamment pas mal d’objets connectés que l’on peut croiser dans les allées du CES sans pour autant savoir qu’ils intègrent un composant STMicroelectronics, comme c’est le cas de nombreux smartphones et de nombreuses tabelttes.

flow

Un thermostat Nest qui comprend un micro-contrôleur 32 bits STMicroelectronics ARM Cortex-M3.

STMicroelecronics aura comme d’habitude son grand showroom à Las Vegas au Encore, pendant le CES. Ils y valorisent notamment une bonne dizaine de startups et spécialistes français des objets connectés ou de la télévision numérique. En les intégrant, on arrivera sans doutes à près de 150 sociétés françaises présentes au prochaine CES, à comparer aux 109 que j’avais décomptées en 2014 et aux moins de 60 en 2013.

Cette croissance provient essentiellement de celle des startups présentes dans le secteur des objets connectés. Et finalement, même si on n’en parle pas souvent, STMicroelectronics est sans conteste le plus grand industriel de ce secteur en France !

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 29 décembre 2014 et mis à jour le 30 décembre 2014 Post de | Composants, Technologie | 20865 lectures

PDF Afficher une version imprimable de cet article     

Reçevez par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Les 3 commentaires et tweets sur “A la découverte de la “fab” chez STMicroelectronics : 3” :




Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
Nouveaux portraits
Expo
557 photos
albth
Expo QFDN Bercy Oct2019
2019
119 photos
albth
Web2day Nantes Jun2019
2019
66 photos
albth
Viva Technology May2019
2019
164 photos
albth
CES 2019 Jan2019
2019
2872 photos
albth
The Robot of the Year Nov2018
2018
35 photos
albth
Journée Innovation Défense Nov2019
2018
30 photos

Téléchargements gratuits

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

Comprendre l'informatique quantique, un ebook de 504 pages pour tout comprendre sur l'informatique quantique et ses enjeux pour l'entreprise :

image

L'ebook Les usages de l'intelligence artificielle, novembre 2018 (522 pages)

CouvertureAvanceesIA

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Sophie Proust
Sophie est Chief Technology Officer (CTO) d'Atos.
flow
Julie Grollier
Julie est Directrice de recherches au CNRS dans l'Unité Mixte de Physique CNRS/Thales. Physicienne inspirée par le cerveau, passionnée par l’informatique et les neurosciences.
flow
Tiphaine Cerba
Tiphaine est ingénieure en matériaux sur la plateforme épitaxie du III-V lab (Thales/Nokia/CEA).
flow
Hélène Perrin
Hélène est Directrice de recherche au CNRS (LPL, Université Paris 13), membre du comité de pilotage du réseau de recherche francilien SIRTEQ sur les technologies quantiques, professeure d'optique quantique et de calcul quantique à l'École normale supérieure et à l'Université Paris-Diderot. #quantique
flow
Pascale Senellart
Pascale est Directrice de recherche au CNRS, Recherche au Centre de Nanosciences et de Nanotechnologies. Professeure chargée de cours à l’Ecole Polytechnique. Cofondatrice de la startup Quandela qui commercialise des sources de lumière quantique. Chargée de mission de l’Université Paris Saclay pour les Sciences et Technologies Quantiques. #quantique
flow
Tara Mestman
Tara est en classe de première générale (2019/2020) avec spécialités maths, physique-chimie et Langue Littérature Culture Étrangère Anglais. Suit le cursus sur l’intelligence artificielle chez Magic Makers. Egalement intéressée par le développement de l’informatique quantique.
flow
Elham Kashefi
Elham est Directrice de recherche au CNRS LIP6 Université Sorbonne, professeure d'informatique quantique à la School of Informatics University d'Edimbourg, cofondatrice de la startup VeriQloud. #quantique
flow
Paula Forteza
Paula est députée des Français d’Amérique latine et des Caraïbes et rapporteure de la mission sur les technologies quantiques demandée par le Premier ministre. #quantique
flow
Jacqueline Bloch
Jacqueline est Directrice de Recherche au CNRS. Elle y développe ses travaux au Centre de Nanosciences et de Nanotechnologies de l'Université Paris Saclay. Elle est également professeure chargée de cours à l’Ecole Polytechnique. #quantique
flow
Eleni Diamanti
Eleni est Directrice de recherches au CNRS (Sorbonne Université) et spécialiste de la cryptographie quantique. #quantique
flow
Maud Vinet
Maud est responsable du projet d'accélérateur quantique sur silicium au sein du CEA. Bref, derrière une révolution technologique qui comptera à l'échelle mondiale ! #quantique #ExpoBercy2019
flow
Maria Alejandra Zuluaga
Maria est maître de conférences et chercheuse en apprentissage automatique avec des applications en médecine et santé à EURECOM, école d’ingénieurs et centre de recherche en sciences du numérique.
flow
Pascale Caron
Ingénieure avec un MBA, Pascale est CEO de Yunova, conseil en innovation et Associée Beforgo.com, une startup prometteuse du Tourisme.
flow
Josiane Zerubia
Josiane est directrice de recherche à l'Inria au centre de Sophia-Antipolis Méditerranée, spécialiste de la modélisation stochastique en traitement du signal et des images, en particulier pour l'imagerie spatiale.
flow
Christelle Yemdji Tchassi
Christelle est ingénieure développement logiciel châssis chez Renault Software Labs à Sophia Antipolis. #ExpoBercy2019
flow
Gabrielle Regula
Gabrielle est enseignante-chercheuse à l’Université d’Aix Marseille à l’institut des matériaux pour la microélectronique et les nanosciences de Provence.

Derniers commentaires

“De jugement de ma part. de liaison avec la phrase d’après, pas une remise en...”
“Sur la TV connectée. Les applications...”
“Plus de scientifiques en politique, pas forcément, mais plus de formation scientifique en politique, sûrement. Toutefois j'ajouterai qu'un politique doit avoir une certaine culture. En fait on ne peut pas reprocher...”
“Il me semble que la politique telle qu'elle est pratiquée attire certains individus accros à la dopamine. Ou bien quand ils ne sont pas a priori, ils le deviennent. Qu'ils aient une formation scientifique ou pas, ils...”
“Le problème n’est pas vraiment la présence ou pas de scientifiques dans les instances politiques, mais le fait que ce sont les politiques qui décident des orientations, qui les imposent et qui financent. Donc si...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Catégories

Tags


Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.