Decode Quantum with Jay Gambetta from IBM

Publié le 20 mars 2024 et mis à jour le 1 avril 2024 - Commenter -
PDF Afficher une version imprimable de cet article
  

In our third Decode Quantum episode in English after Simone Severini from AWS and Tommaso Calarco from Julich, we are with Jay Gambetta from IBM. And he welcomed us since we recorded this episode near his office at IBM Yorktown Heights Research lab in New York state. This is the 68th episode of Decode Quantum. I spent a week in the area visiting IBM and other companies in the quantum ecosystem along with Fanny Bouton. This episode is also broadcasted on Frenchweb.

Jay Gambetta is a quantum physicist. Born in Australia, he did his thesis there at Griffith University in a quantum foundations theme. He then worked on superconducting qubits as a post-doc at Yale University and the Institute of Quantum Computing of Waterloo University in Ontario, Canada. He then joined IBM in 2011 and became in 2019 the VP in charge of all things quantum computing: hardware, software and business development. He is also an American Physical Society fellow, an IEEE fellow, and an IBM fellow.

Here are the topics we covered during our discussion.

How did he land in quantum science during his studies in Australia? He started with doing an undergrad in laser science which he found to be cool. He decided to do his undergrad “honors” in quantum physics with shooting lasers on atoms and chose a topic in quantum foundations at the intersection of physics and mathematics.

His thesis title and topic was Non-Markovian Stochastic Schrodinger Equations and Interpretations of Quantum Mechanics, 2004 (211 pages). He was looking at the potential need for a non linear Schrodinger wave equation which landed him looking at quantum trajectories and the likes. Such a debate started in 1994 about whether the world could be Markovian, with some memory. His work, however, remains an open envelope, it didn’t solve the debate. He did his thesis with Howard Wiseman after having followed a course on stochastics differential equations. He didn’t believe he could be a theoretical physicist. He had to prove this after being an experimentalist.

The link between his thesis and what he is doing now at IBM. It helped him understand quantum optics and it happens that superconducting qubits are about quantum optics and quantum electrodynamics. It couples microwave pulses which are a category of photons and artificial atoms made of superconducting current flowing through Josephson junctions.

His tenure as post-doc in the “Yale gang” which saw the creation of circuit quantum electrodynamics (cQED) in 2003-2004 by Andreas Wallraff, Alexandre Blais, David Schuster, Jerry Chow, and many others, under the auspice of Michel Devoret, Rob Schoelkopf, and Steve Girvin.

He then worked in Canada (Waterloo) with Joseph Emerson, Frank Wilhem-Mauch and Raymond Laflamme, working on benchmarking quantum systems.

The long history of IBM in quantum, which started in the 1970s. Charles Bennet defined the whereabouts of reversible computation in Logical Reversibility of Computation, November 1973 (6 pages) and worked on quantum teleportation. He also created the first “prepare and measure” QKD protocol in 1984, along with Gilles Brassard. IBM created a first quantum computing system using the NMR technology, which factorized the number 15 using Shor’s integer factoring algorithm, with the participation of Matthias Steffen from NIST and UCSB, and who works at IBM since 2006. They then worked on flux superconducting qubits. They published a first paper around the 2012 APS march meeting. See Superconducting Qubits Are Getting Serious by Matthias Steffen, December 2011. Until 2015, all of this was pure research. Then, they launched the first multi-qubits QPU in the cloud in 2016 so that many people outside IBM could test it.

The history of IBM’s Yorktown Heights research lab. The NMR qubit group was in Almaden, south of San Jose in California. It was a testbed of qubits, with some lessons learned on how to build functional qubits. Then, we cover the progress in stability time for superconducting qubits which was in the nanoseconds range with Yasunobu Nakamura’s experiment at NEC in 1999. IBM recently reached 3 ms stability times (T1), although it is not yet in production.

IBM’s state of the art current technology is their Heron processor with 133 qubits. It is using tunability in coupler for two qubit gates. It has fast gates, low crosstalk, and high coherence (see Heron’s current figures of merit below). Their transmon qubits are not tunable by design, which helps obtain good figures of merit. Heron is an enabler for “quantum utility”, the ability to run quantum computing workloads bringing some form of quantum advantage. They are now focused on modularity and scale-out approaches to assemble multiple such chips using microwave couplers (with Flamingo). Regarding quantum utility, the 100×100 challenge became the challenge to use 5K gates with quantum error mitigation (QEM).

The quantum software infrastructure built around Qiskit, which helps programming and send gates to a quantum computer. It then transitioned to make it more reliable. How to make compilation and transpilation scalable? The notion of composable software and dynamic circuits with measurements done in real time that enable conditional code. Qiskit 1.0 was just launched. It took 7 years to release a “production grade” version. Qiskit is now more stable and reliable. One future extension will be to build in quantum error correction.

Progress with qubit quality? Qubit fidelities do not measure qubit crosstalk, thus the use of errors per layered gate benchmarking that was proposed in November 2023 which assesses the ability to run a large number of gates and cycles. Quantum volume was the first attempt to create a benchmark. It is important to have good fidelity across all the device and with a minimum standard deviation. It depends on fab quality. To do that on a regular basis is challenging. Quality depends on the Josephson single junction tunnel thickness. It is improved post-fab with using a laser that is shooting the junction. See Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors by Jared B. Hertzberg, Jerry M. Chow et al, arXiv, September 2020 (9 pages). They also make sure to separate well the control frequencies of neighboring qubits. IBM also looks at reducing the turn-around manufacturing cycle to quickly test new qubit chips. The company has tested a large number of chips over time. Obtaining 99.99% fidelities in whole QPUs is in their roadmap.

The learning cycle and choice making. They initially investigated the use of surface codes using square lattice. It was abandoned. Cross resonance gates made that not possible. It led them to pick LDPC error correction codes that are more efficient with heavy-hex lattice (that enables large scale entanglement) and long range connectivity.

We then discuss about the quantum utility pushed around the kicked Ising model paper in Evidence for the utility of quantum computing before fault tolerance by Youngseok Kim et al, IBM Research, RIKEN iTHEMS, University of Berkeley and the Lawrence Berkeley National Laboratory, Nature, June 2023 (8 pages). The paper was followed by papers from many research labs describing various classical simulations of the circuit: Efficient tensor network simulation of IBM’s Eagle kicked Ising experiment by Joseph Tindall, Matt Fishman, Miles Stoudenmire and Dries Sels, PRX Quantum, June 2023-January 2024 (16 pages), Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance by Tomislav Begušić et al, Caltech, August 2023 (17 pages), Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments by K. Kechedzhi et al, Google AI, NASA, June 2023 (15 pages), Simulation of IBM’s kicked Ising experiment with Projected Entangled Pair Operator by Hai-Jun Liao et al, China, August 2023 (8 pages), Efficient tensor network simulation of IBM’s largest quantum processors by Siddhartha Patra et al, September 2023 (6 pages). Jay explains us what these papers didn’t get well. IBM is pushing two things:

  1. Find interesting problems to be solved on current systems (>=127 qubits with quantum error mitigation and the use of constant depth dynamic circuits), which requires some algorithmic research. The kicked Ising model used in the Nature paper is not the only one possible. You can have some symmetry in the problem but not too much, otherwise it could be classically simulated. The scope of these algorithms is not determined yet, thus the absence of quantum advantage claims from IBM.
  2. Execute the algorithm on a QPU of large enough scale and obtain a reliable result that is not classically emulable.

The mix of these two is a “quantum utility”. So far, 13 different demonstrations were done seen in multiple papers, and not restricted to a kicked Ising model, but in fundamental physics research and not yet industry-grade use cases. Chemistry simulation is the hard part since fermion to qubits mapping is usually expensive. See Uncovering Local Integrability in Quantum Many-Body Dynamics by Oles Shtanko, Zlatko Minev et al, July 2023 (8 pages) on spin lattices simulation with 124 qubits, Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits by Roland C. Farrell et al, August 2023 (14 pages), Quantum Simulations of Hadron Dynamics in the Schwinger Model using 112 Qubits by Roland C. Farrell et al, January 2024 (53 pages) running on Heron with 133 qubits, Quantum reservoir computing with repeated measurements on superconducting devices by Toshiki Yasuda et al, October 2023 (12 pages) and Machine Learning for Practical Quantum Error Mitigation by Haoran Liao, Zlatko K. Minev et al, September 2023 (11 pages) on using machine learning to improve QEM.

On IBM long term roadmap, Jay discusses the way to scale out QPUs with assemblies of qubit chips and different interconnect solutions. Eagle allowed TSV (through silicon vias) and multilevel wiring. Osprey and Condor were about I/O scaling. Heron was about implementing a new two-qubit gate (CZ) and a tunable coupler. Modularity is important. IBM plans to use couplers to interconnect qubit chips: the M coupler (for short-range chip to chip connections, with Crossbill), L (long range of about one meter, with Flamingo) and C (cross coupling, with Kookaburra). It enables the implementation of qubit blocks with a certain number of logical qubits. Blocks are connected with other blocks. They are working on reducing the cost, footprint, and energy consumption of qubits control. One solution being to get away from the (energetically costly) FPGA and move on ASIC controls.

On IBM customer outreach approach. Quantum computing as a service. IBM builds a hardware and software platform. He tries to be transparent on wording with no overpromises. IBM puts a scientific tool into the hands of people. In the enterprise segment, IBM targets early adopters who know they won’t have an ROI today but maximize their future success. Customers don’t want to miss a technology disruption. He believes the wait won’t be that long. 2030 could be a reasonable horizon to obtain some business benefit from quantum computers. He advises customers to use the free offer, which since September 2023 includes several 127 qubit QPUs and is not limited like before to <15 qubits QPUs (they are actually all retired). Customers should create a small team on quantum computing to maximize the success of using it when it shows up. Five people is a sweet spot for such a team, on top of some AI investment of course, which can bring shorter term return on investment.

In the end, we found out that a one hour audio format is still short to cover all these topics!

Above: IBM Quantum System Two installed at Yorktown Heights. Another one is installed at the Poughkeepsie Data center. This system hosts three independent Heron 133-qubit chips. The casing can accomodate future systems with thousand qubits given many parts are still empty.

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 20 mars 2024 et mis à jour le 1 avril 2024 Post de | Actualités, Quantique | 3642 lectures

PDF Afficher une version imprimable de cet article     

Reçevez par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img


Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Last posts / derniers articles

Free downloads

Understanding Quantum Technologies 2024, a free 1,554 pages ebook about all quantum technologies (computing, telecommunications, cryptography, sensing):

image

Understanding Quantum Technologies 2024 Short version, a 26 pages version with key takeaways from the eponymous book.

image

The Two-Spin Enigma: From the Helium Atom to Quantum Ontology, a quantum foundations paper coauthored with Philippe Grangier, Alexia Auffèves, Nayla Farouki and Mathias Van den Bossche (paper backstory).
image

Voir aussi la liste complète des publications de ce blog.

Derniers commentaires

“Bravo Olivier! Quel boulot tu m’épates totalement et je t’adresse mes plus sincères félicitations! Je ne suis pas sûr de tout lire car je suis maintenant 100% dans l’art et la poésie et mon seul rapport à la...”
“[…] to Olivier Ezratty, author of Understanding quantum technologies 2023, the challenge for Europe is to position itself outside of where the US and China are likely end up...”
“Désolé, je suis passé à l'anglais en 2021 sans revenir au français. Traduire un tel ouvrage (1366) pages d'une langue à l'autre est un travail herculéen, même avec des outils de traduction automatique. Sachant...”
“Je suis un artiste conceptuel, certes je garde la grande majorité de mon travail dans ma tête par défaut d'un grand mécène. Mon travail de base se situe sur le "mimétisme" qui mène aux itérations et de nombreux...”
“Better than a Harry Potter! Thanks Olivier...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
QFDN
Expo
791 photos
albth
Remise Légion d'Honneur Philippe Herbert Jul2021
2021
15 photos
albth
Vivatech Jun2021
2021
120 photos
albth
Visite C2N Palaiseau Mar2021
2021
17 photos
albth
Annonce Stratégie Quantique C2N Jan2021
2021
137 photos
albth
Maison Bergès Jul2020
2020
54 photos
albth
Grenoble Jul2020
2020
22 photos

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Elle circule dans différentes manifestations. J'ai réalisé entre 2011 et mi 2023 plus de 800 portraits photographiques de femmes du numérique avec une représentation de tous les métiers du numérique.

Les photos et les bios de ces femmes du numérique sont présentées au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Gaëlle Rannou
Gaëlle est étudiante à 42 Paris et tutrice de l’équipe pédagogique (en 2021).
flow
Jehanne Dussert
Jehanne est étudiante à l'école 42, membre d'AI For Tomorrow et d'Open Law, le Droit ouvert. Elle est aussi fondatrice de "Comprendre l'endométriose", un chatbot informant sur cette maladie qui touche une personne menstruée sur 10, disponible sur Messenger. #entrepreneuse #juridique #santé
flow
Chloé Hermary
Chloé est fondatrice d'Ada Tech School, une école d'informatique alternative et inclusive dont la mission est de former une nouvelle génération de talents diversifié à avoir un impact sur le monde. #entrepreneuse #formation
flow
Anna Minguzzi
Anna est Directrice de Recherche au CNRS au Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC) à Grenoble. #quantique
flow
Maeliza Seymour
Maeliza est CEO et co-fondatrice de CodistAI, qui permet de créer une documentation du code informatique par une IA.
flow
Candice Thomas
Candice est ingénieure-chercheuse au CEA-Leti, travaillant sur l’intégration 3D de bits quantiques au sein du projet Quantum Silicon Grenoble. #recherche #quantique
flow
Stéphanie Robinet
Stéphanie dirige un laboratoire de conception intégrée de circuits électroniques du CEA-Leti qui travaille sur des systèmes sur puces intégrés, des interfaces de capteurs, des interfaces de contrôle de qubits et de la gestion intégrée de l'énergie. #recherche #quantique
flow
Sabine Keravel
Sabine est responsable du business development pour l’informatique quantique chez Atos. #quantique #IT
flow
Céline Castadot
Céline est HPC, AI and Quantum strategic project manager chez Atos.
flow
Léa Bresque
Léa est doctorante, en thèse à l'institut Néel du CNRS en thermodynamique quantique, sous la direction d'Alexia Auffèves (en 2021). #quantique #recherche
flow
Emeline Parizel
Emeline est chef de projet web et facilitatrice graphique chez Klee Group, co-fondatrice TEDxMontrouge, gribouilleuse à ses heures perdues, joue dans une troupe de comédie musicale, co-animatrice de meetups et est sensible à l’art et à la culture. #création
flow
Elvira Shishenina
Elvira est Quantum Computing lead chez BMW ainsi que présidente de QuantX, l'association des polytechniciens du quantique. #quantique
flow
Marie-Noëlle Semeria
Marie-Noëlle est Chief Technology Officer pour le Groupe Total après avoir dirigé le CEA-Leti à Grenoble. #recherche
flow
Gwendolyn Garan
Gwendolyn est travailleuse indépendante, Game UX Designer, Game UX Researcher (GUR) et 2D Artist pour le jeu vidéo, étudiante en Master 2 Sciences du Jeu, speaker et Formatrice sur l'autisme et la neurodiversité, l'accessibilité et les systèmes de représentation dans les jeux vidéo. #création #jeuvidéo
flow
Alexandra Ferreol
Alexandra est étudiante d'un bachelor Game Design à L'Institut Supérieur des Arts Appliqués (année scolaire 2019/2020) #création #jeuvidéo
flow
Ann-elfig Turpin
Ann-elfig est étudiante en deuxième année à Lisaa Paris Jeux Vidéos (Technical artist, 3D artiste), année scolaire 2019/2020. #création #jeuvidéo