Les français de la TV connectée : Spideo

Publié le 25 avril 2013 et mis à jour le 3 août 2013 - Un commentaire -
PDF Afficher une version imprimable de cet article

Nous poursuivons avec Spideo la série des français de la TV connectée commencée en mai 2012 et dont le dernier épisode en date était C2M publié en mars 2013. Spideo fait partie d’un marché fragmenté qui comprend un grand nombre d’acteurs : celui de la recommandation de contenus vidéo.

Logo Spideo

Un marché fragmenté et complexe

Le besoin consommateur est bien connu : il est (censé être) perdu devant la profusion de contenus disponibles dans les offres de VOD, de S-VOD et de TV de rattrapage et a besoin d’orientation pour trouver les contenus qui vont lui permettre de passer un bon moment, seul ou à plusieurs.

Le problème n’est finalement pas de trouver quelque chose, car – profusion aidant – on trouve toujours de quoi s’occuper. On recherche surtout des contenus qui apporteront le plus de satisfaction dans le temps que l’on va consacrer à leur consommation. L’exigence du consommateur est de plus en plus grande, ce d’autant plus que les sources de distractions sont de plus en plus nombreuses tout comme les écrans pour en profiter.

Côté diffuseurs de contenus, le besoin est à la fois d’augmenter les ventes de contenus lorsqu’ils sont facturés à la demande, ou d’augmenter les abonnements et de réduire le churn (pertes d’abonnés) lorsqu’il s’agit d’abonnements (S-VOD). Pour la S-VOD, l’objectif des agrégateurs est d’augmenter la consommation des fonds de catalogue car c’est la partie dont les droits de diffusion sont les moins chers, là aussi pour réduire le churn.

Pour la TV de rattrapage, le modèle économique des diffuseurs est celui de la publicité. Là encore, la recommandation permet d’augmenter la consommation de contenus pour assurer ce revenu. Il est notamment particulièrement important pour les opérateurs triple-play d’augmenter la part variable de l’ARPU (average revenue per user) au-dessus du forfait de base. La vente de contenus VOD et S-VOD reste avec celle des jeux le principal moyen de l’augmenter.

La marché de la recommandation est réputé difficile. En général, les solutions sont commercialisées en marque blanche auprès d’opérateurs de VOD, qu’il s’agisse de “pure players OTT” (comme Video Futur) ou d’opérateurs télécoms qui intègrent des offres de VOD ou de S-VOD dans leurs packages triple-play. Rares sont les solutions de recommandation btoc. Elles peuvent cependant être intégrées dans des guides de programmes.

Deux histoires du marché de la recommandation datant des années 2000 méritent d’être rappelées.

Premier épisode, le prix lancé par Netflix en 2006 qui était à la recherche d’algorithmes de recommandation pour optimiser son service de location de DVD et faire en sorte que ses clients profitent bien du service afin de réduire le churn (pertes d’abonnés). Le prix était de $1m mais en échange de la récupération par Netflix de la propriété intellectuelle du travail réalisé. C’était en quelque sorte un appel d’offre géant. Il a été gagné par le BellKor’s Pragmatic Chaos, une équipe multinationale de chercheurs et statisticiens menée par Chris Volinsky d’AT&T. L’objectif de ce prix était de faire des recommandations de films à partir d’un échantillon de 100 millions de notes données par un demi-million d’utilisateurs sur 17740 films. Et de comparer ensuite ces recommandations automatiques avec les notes attribuées aux films par les utilisateurs, comprises dans un jeu de données caché. Il fallait obtenir un résultat 10% meilleur aux recommandations du système de Netflix d’alors, Cinematch. Sur les milliers d’équipes s’étant lancé dans le concours, seules moins d’une dizaine avaient réussi à relever le défi. Et notamment une équipe de Hongrois qui avait jeté l’éponge en cours de route pour créer sa propre société, Gravity.

Second épisode, l’histoire bien connue de Criteo. C’est aujourd’hui l’une des rares réussites internationales du web français. La société est spécialisée dans le reciblage de publicités en ligne. Elle a près de 1000 salariés, des filiales aux USA, en Europe et en Asie et un chiffre d’affaire supérieur à $300m. Mais au départ, Criteo était un moteur de recommandation de films en marque blanche. Lancé en 2005, il n’avait pas réussi à percer. A la fois parce que le marché de la recommandation est difficile mais aussi parce que celui de la vidéo à la demande n’était pas encore très développé à l’époque. D’où le pivot en 2008 qui a amené  Criteo à utiliser son savoir-faire technologique et statistique pour l’appliquer au reciblage publicitaire, un marché émergent bien plus vaste et plus porteur.

Conséquences de ces deux histoires : d’un côté, l’aspect technique et statistique de la recommandation est plutôt complexe et requiert des ressources scientifiques assez conséquences. De l’autre, ce n’est pas un business évident, notamment en marque blanche ! Mais se lancer avec une application de recommandation en btoc n’est pas plus aisé car il faut tout le reste autour : le guide de programme et l’accès aux contenus et dans un marché là encore très encombré. Bref, il ne faut pas se lancer à la légère dans le marché de la recommandation !

L’évolution du marché de la recommandation

Ces deux épisodes précédents datent presque de la préhistoire du numérique. Depuis, plusieurs phénomènes ont sérieusement changé la donne du marché de la vidéo à la demande :

  • L’émergence de la consommation de contenus multi-écrans, poussée surtout par l’adoption massive des tablettes depuis 2010.
  • L’arrivée des smart TV qui enrichissent la consommation de télévision au-delà des chaines TV linéaires.
  • La croissance du marché des solutions OTT (over the top) de consommation de vidéo et notamment les box comme celles qui utilisent Google TV, l’Apple TV, les Roku et autres Boxee. Toutes sont utilisées avant tout pour consommer de la vidéo non-linéaire. Ce n’est pas forcément le cas en France, où la consommation passe beaucoup par les box traditionnelles des opérateurs ou sur tablettes. Mais dans de nombreux autres pays où l’IPTV n’a pas le taux de pénétration de la France, l’OTT est bien plus populaire, notamment aux USA. Netflix y est notamment une référence pour la VOD et la S-VOD mais aussi Hulu pour les séries TV. Et on les utilise sur les boitiers Roku & co.
  • Le développement du marché de la vidéo à la demande, même s’il est un peu handicapé en France par une chronologie des médias limitante pour la S-VOD. Il croit de plus de 60% par an depuis quelques années. Mais les catalogues restent très fragmentés et les utilisateurs s’y perdent un peu dans les différentes offres.
  • Dans la vidéo à la demande, la croissance de la part des offres d’abonnement (S-VOD, subscription VOD) qui s’appuient, comme Netflix depuis l’origine, sur la valorisation de catalogues importants et notamment des “fonds de catalogue” avec des droits de diffusion peu chers.
  • La croissance de la consommation de TV non-linéaire, dite de rattrapage ou “catch-up” (ce dernier terme anglais qui, au passage, n’est visiblement utilisé qu’en France !).
  • L’émergence du rôle des réseaux sociaux dans la recommandation et les liens entre Internautes. Evidemment, quand on parle de réseaux sociaux, on sous-entend immédiatement Facebook et Twitter. Le premier peut servir à identifier les goûts des Internautes dans de nombreux domaines et les affinités personnelles. Le second peut servir à faire de la recommandation temps réel en se basant sur les affinités personnelles et les flux de tweets intégrant les hashtags des programmes.
  • L’augmentation des débits fixes et bientôt mobiles (avec le LTE) qui s’accompagne d’une augmentation de la consommation de vidéos non linéaires.
  • Le développement des solutions de cloud et de big data qui facilitent le déploiement à grande échelle d’algorithmes de recommandation.

La complexité mathématique de la recommandation n’a pas baissé pour autant. Il existe tout un tas de variantes pour faire des recommandations. Celles-ci peuvent-être basées sur les notes des utilisateurs et la comparaison de profils utilisateur (ceux qui aiment ceci aiment aussi cela), sur les liens entre produits (comme sur Amazon), sur la création de bases d’attributs riches sur les contenus (le génome chez l’israélien Jinni) ou sur la recommandation sociale (le système recommande ce que ses amis ont liké sur Facebook). Les systèmes qui fleurissent régulièrement panachent souvent plusieurs de ces méthodes.

Mais il y a d’autres manières d’améliorer la recommandation : en travaillant l’interface utilisateur et en facilitant la découverte de nouveaux contenus que l’on est susceptible d’apprécier et de vouloir consommer et avec une navigation simple dans l’interface des outils de recommandation.

L’équipe de Spideo

Cela fait plus de trois ans que je croise cette équipe dans différents contextes. La startup a été créée par :

  • Gabriel Mandelbaum qui a démarré sa vie professionnelle comme responsable new média chez Marathon Media, une société de production audiovisuelle. Il y proposait aux clients de la production de contenus sur les nouveaux médias (site Internet, jeux multijoueurs, réseaux sociaux autour des marques). Il a notamment œuvré pour e-TF1 et France Télévision Interactive. C’est un ancien d’HEC.
  • Paul de Monchy qui avec sa double formation Mines Nantes et HEC Master Entrepreneur joue le rôle de CTO. C’est un ancien de Bouygues Télécom qui y travaillait dans le marketing de renouvèlement de mobiles pendant trois ans après y avoir fait un stage de six mois en maitrise d’ouvrage.
  • Thibault d’Orso est issu de Normale Sup en sciences sociales et de Science Po. Il avait une première expérience chez Roche où il gérait la publicité en ligne et la présence dans les médias sociaux. Au passage, Spideo est l’une des premières startups issues de l’incubateur de Science Po Paris.

PDMTBO

L’équipe s’est ensuite étoffée. Elle comprend maintenant 14 personnes, toutes de moins de 30 ans !

La solution de Spideo

Spideo propose des solutions de découverte et de recommandation, destinées au FAI et autres opérateurs ciblant les set-top-boxes, TV connectées et terminaux mobiles. Elles sont déclinées à la fois en marque blanche et avec des applications btoc.

L’expérience utilisateur s’appuie sur une interface simplifiée et sur diverses solutions de recommandation qui sont panachées. Le principe est de rendre la recommandation la plus simple possible et sans alourdir l’interface utilisateur. Mais la société laisse le soin à ses clients btob de recréer l’interface utilisateur qui correspond à la charte graphique de leur portail. Spideo leur fournit des guidelines ergonomiques qui peuvent ensuite être déclinées dans la charte graphique du client.

L’expérience utilisateur proposée par Spideo a été créée avec le concours de designers d’interactions majors de l’ENSAD (Arts Déco) utilisés en freelance. Mais le designer impliqué a rejoint ensuite Spideo. L’expérience utilisateur fonctionne aussi bien sur tablettes que dans les set-top-boxes. Elle est disponible en btoc dans une application iPad et en btob en marque blanche pour son intégration dans le système de vidéo à la demande du client. L’application iPad est sortie aux USA en avril 2013.

Elle présente les caractéristiques suivantes :

  • La sélection rapide de ses envies, sorte de sélection du  genre de film que l’on souhaite voir avec plusieurs critères cumulables. Cette fonction repose sur la base de données Envideo de Spideo. La base est alimentée et indexée par un processus automatique et ensuite nettoyée manuellement. Leurs efforts de R&D actuels de Spideo visent à augmenter et améliorer la part d’indexation automatique pour permettre l’ingestion de catalogues plus importants et de couvrir le marché de nouveaux pays.

Interface Spideo iPad (1)

  • Une recommandation personnalisée simplifiée de films et de séries TV qui s’enrichit avec l’usage, avec les notes que l’on donne aux films, ceux que l’on achète. Elle s’appuie surtout sur le graphe des contenus qui exploite les liens créées entre chaque contenu par l’indexation. Le filtrage collaboratif vient ensuite affiner les suggestions. La base de la recommandation d’Envideo est centrée sur les contenus eux-mêmes plutôt que sur les statistiques d’usage. Au passage, l’écueil habituel subsiste : ce genre de système propose toujours un tas de films que l’on a déjà vu. Le cerveau humain n’expose pas encore sa mémoire sous forme d’APIs “kurzweiliennes” exploitables par ce genre de service ! Tout au plus peut-on en profiter pour noter ce que l’on a déjà vu, ce qui a la longue va améliorer la pertinence des recommandations. Mais cette étape n’est pas trop critique car le système des envies précédemment vu permet d’avoir un “cold start” acceptable pour les premières recommandations.

Interface Spideo iPad (10)

  • Une logique de rebonds par hyperliens dans la filmographie des acteurs et réalisateurs. C’est une approche maintenant classique, le point clé étant de disposer des bonnes données pour la mettre en œuvre. Classique, mais bon… on ne la trouve pas encore dans toutes les offres de VOD chez les opérateurs IPTV français !

Interface Spideo iPad (5)Interface Spideo iPad (6)

  • L’accès rapide à la bande annonce, pour assurer une homogénéité typographique et une bonne lisibilité de l’interface utilisateur.

Interface Spideo iPad (2)

  • Une fonction de recherche très rapide pour trouver films, séries, acteurs et réalisateurs. La base de films sur l’application iPad pour la France ne comprend pour l’instant qu’environ 2000 films. Cette limitation provient des données disponibles sur iTunes et les affiches, bandes annonces que Spideo récupère progressivement auprès de son fournisseur Plurimedia (qui a fait l’objet d’un article dans cette série, Plurimedia a un programme de fourniture d’informations, guides de programmes et contenus, dédié aux startups). Comme l’application propose ensuite d’acheter les contenus sur iTunes, elle se limite pour l’instant volontairement au niveau des contenus proposés. Cela pourra changer avec l’intégration d’autres offres de VOD.

Interface Spideo iPad (11)

  • La gestion du bookmarking qui permet de mettre de côté les contenus que l’on a identifiés dans l’interface et que l’on souhaite regarder ultérieurement. Le système prend en compte les fenêtres de diffusion en VOD tout comme l’arrivée de films en attente dans cette même fenêtre de diffusion. Cette fonctionnalité est encore rare dans les systèmes de consommation de vidéo et de TV de rattrapage. Elle deviendra à mon sens de plus en plus demandée. Elle remplacera à terme la fonctionnalité d’enregistreur (PVR : personal video recorder).
  • La gestion intégrée de plusieurs catalogues permettant à la fois à un consommateur de faire une recherche d’abord sur les films et seulement ensuite sur leur fournisseur VOD, et à ces derniers de préserver leur spécificité lorsqu’ils sont intégrés dans une offre multi-services de VOD (pas de comparateur de prix). Dans l’application iPad et en France, les contenus peuvent être récupérés sur iTunes. Aux USA, ils le sont aussi sur Netflix. L’intégration avec Netflix est très transparente et donne l’impression que la consommation de vidéo se passe à l’intérieur de l’application Spideo.

Spideo avec iTunes et Netflix

netflix 4netflix 5

  • L’incontournable capacité à liker les contenus sur YouTube et à Tweeter dessus. Elle sera plus tard complétée d’une fonction de création et de partage de playlists via Facebook Connect.
  • La recommandation de programmes TV (direct et rattrapage) est fonctionnelle sur les mêmes principes (Envideo, rebonds similaires, suggestions personnalisées et recommandation sociale). Elle est pour l’instant mise en œuvre dans l’application Téléstar développée par Dotscreen et présentée dans l’article correspondant. Les métadonnées descriptives des programmes TV (titres, genre, synopsis, horaires de diffusion) sont récupérées chez des fournisseurs comme Plurimedia, Mondadori (éditeur de Téléstar) ou Rovi pour le reste de l’Europe.

En btob, la solution de Spideo est à l’œuvre dans le service de S-VOD de Canal+ : CanalPlay Infinity et ce, depuis fin 2011. Spideo y gère la recherche par envie et similaires sur tous les écrans ciblés par le service. Le service est fourni à Canal+ sous la forme de services web de recommandation : le moteur Envideo, la recherche de similaires, la recommandation personnalisée et les métadonnées enrichies pour les films (avec les envies correspondant à chaque film). On ne retrouve donc pas, tout du moins à l’identique, les neufs fonctionnalités listées ci-dessus.

CanalPlay Infinity

Un autre service du même genre doit être lancé en 2013.

Spideo fournit aussi à ses clients un outil de backoffice qui permet de définir des règles métier sur la recommandation. Des outils de reporting sont encore en cours de développement pour indiquer la performance des recommandations et proposer des contenus à acquérir qui seraient très bien recommandés et consommés.

Le modèle de revenu de Spideo dépend du contexte et du client :
  • La vente de licences de ses outils, surtout chez les FAI.
  • La vente de prestation avec la maintenance éditoriale des catalogues, des développements plus ponctuels. Un modèle plus adapté aux éditeurs de contenus qui cibleront les TV connectées. Ce n’est pas le modèle à privilégier car il ne ‘scale’ pas mais il faut souvent en passer par là pour gagner ses premiers clients.
  • Le partage de revenu sur la vente de VOD, notamment avec sa propre application iPad. Spideo va comme il se doit sortir d’ici la fin de l’année une version Android de son application.

La concurrence de Spideo

La concurrence de Spideo est variée et internationale. On peut citer :

  • L’israélien Jinni, une startup israélienne qui propose son système à base de « génome » permettant de typer les contenus (manuellement) avec près de 160 paramètres. C’est une version plus complexe à mettre en œuvre que la technique centrée sur les contenus Envideo de Spideo. Jinni gère plutôt les « couches basses » de la recommandation, qui sont exposées sous forme d’API exploitables dans n’importe quel middleware de set-top-box ou site web. Jinni a Belgacom dans son capital et est déployé en France par Bouygues Télécom, et chez Timer Warner et Vudu  aux USA (clients acquis début 2013). La société va aussi sortir une application iPad btoc. La différence de Spideo se situe dans la capacité à intégrer à la fois les couches basses de la gestion des contenus, de la recommandation et du parcours utilisateur. On voit à leur site web (ci-dessous) que la conception d’interface n’est pas leur fort.

Jinni home page

  • L’anglo-américain ThinkAnalytics qui propose un moteur de recommandation en marque blanche. Il utilise des algorithmes statistiques lourds et du collaborative filtering. C’est une autre référence du marché.
  • Les roumains de Gravity avec sa « G platform » qui, à l’instar de Criteo, propose aussi une solution de reciblage publicitaire. Ils ont donc fait un pivot partiel pour étendre leurs domaines d’activité. La différentiation de Spideo par rapport à ces deux acteurs est de mettre l’accent sur le contenu plutôt que sur le collaborative filtering. Elle évite les biais et erreurs des approches statistiques, notamment dans un contexte où plusieurs utilisateurs sont devant la même TV. Elle améliore la pertinence et au passage, est plus économe en ressources machine.
  • Aprico, une filiale de Philips également spécialisée dans la recommandation, acquise en mai 2012 par Axel Springer Digital TV Guide, une filiale du groupe média allemand Axel Springer qui propose un éventail large de solutions de guides de programmes, de recommandation et aussi de solution de ciblage publicitaire vidéo. En France, le groupe Axel Springer édite notamment Télé Magazine. C’est aussi l’actionnaire majoritaire de aufeminin.com. En Allemagne, il opère le réseau de chaines satellites Pro7. On peut supposer que les solutions Aprico sont donc largement utilisées par les différents médias du groupe.
  • TV Genius, une startup UK qui développe aussi des guides de programmes (EPG) et a été acquise par Red Bee Media en 2011. Ce dernier est un fournisseur de données qui exerce le même métier que le français Plurimedia. Red Bee est une société anglaise mais dirigée actuellement par un français, Patrick Tilleux, passé notamment par TF1 et Canal+. Red Bee alimente notamment en données de programme le fameux iPlayer de la BBC tout comme le logiciel Windows Media Center de Microsoft.
  • Le français Cognik qui fait de la recommandation et l’applique à une usage précis : la relinéarisation de contenus pour créer des chaines non linéaires personnalisée. Cette solution est utilisée dans la chaine pour enfants “Mon Nickelodeon Junior” du bouquet de CanalSat. La société est aussi partenaire de WizTivi, httv, Hubee et TDF.

On trouve d’autres concurrents du monde la recommandation chez des éditeurs de logiciels middleware pour l’IPTV qui intègrent très souvent la VOD dans leur offre, parmi lesquels Espial, Netgem, Viaccess/Orca, NDS, IrDeto et OpenTV.

Spideo est face au défi déjà cité à de multiples occasions pour les startups françaises de la TV connectée : se développer aussi rapidement que possible à l’international pour sortir du carcan réduit du marché français et générer des économies d’échelles. Cela demande de la volonté, des moyens, un produit déployable à grande échelle et aussi une forte différentiation. L’équipe a déjà pu se confronter au marché américain en participant à un voyage de prospection organisé par Cap Digital et Ubifrance à New York fin 2012. Conséquence : trois prospects, qui restent évidemment à “closer”. C’est un bon début !

Comme toute startup en phase d’émergence, Spideo est à la recherche de financements, principalement pour le développement commercial à l’international et aussi pour continuer à améliorer ses solutions de recommandation. Avis aux amateurs…

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 25 avril 2013 et mis à jour le 3 août 2013 Post de | Actualités | 20256 lectures

PDF Afficher une version imprimable de cet article          

Reçevez par email les alertes de parution de nouveaux articles :

Un commentaire sur “Les français de la TV connectée : Spideo” :




Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
Nouveaux portraits
Expo
519 photos
albth
The Robot of the Year Nov2018
2018
35 photos
albth
Journée Innovation Défense Nov2019
2018
30 photos
albth
Mondial Auto et CES Unveiled Oct2018
2018
239 photos
albth
France Digitale Day Sept2018
2018
26 photos
albth
Universités d'Eté du MEDEF Aug2018
2018
37 photos
albth
L'Echappée Volée Jul2018
2018
297 photos

Téléchargements gratuits

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

L'ebook Les usages de l'intelligence artificielle, octobre 2017 (362 pages)

CouvertureAvanceesIA

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Kheira Benmeridja (SETL)
Kheira est Product Owner, responsable du développement d’infrastructures de marché utilisant la technologie blockchain, chez SETL.
flow
Joëlle Toledano
Joëlle est Professeure d’économie (numérique, concurrence, ..), passionnée de politique publique (régulation, fréquences, blockchain, …) et impliquée dans le développement de startups.
flow
Marie-Line Ricard (Sia Partners)
Associée au sein du cabinet Sia Partners, dans le secteur financier autour des problématiques traditionnelles et des évolutions réglementaires et dans les nouvelles technologies telles que la #Blockchain, les ICOs, et plus globalement la token economy.
flow
Francesca Gatti Rodorigo (Awaywegals)
Francesca est développeuse web full-stack, Fondatrice et CEO de awaywegals.com, une plateforme web développée sur blockchain et dédiée aux voyageuses qui sera lancée en 2020.
flow
Ying-Huei Chu (MoneyTrack)
Ying-Huei est Product Owner chez MoneyTrack, une startup dont la solution permet de tracer l'utilisation de fonds avec le blockchain, l'indemnisation d'assurance, le budget de l'état, les bourses scolaires, etc.
flow
Stéphanie Flacher (Maslow Capital Partner)
Stéphanie est Directrice du département Blockchain de Maslow Capital Partner, banque d'affaires indépendante spécialisée dans l'accompagnement des entreprises européennes à forte croissance.
flow
Jeanne Dussueil
Jeanne est journaliste économie et tech, fondatrice du nouveau média GlobalizNow.com et coordinatrice de l’association Fais Ton Réseau.
flow
Liz NDouga (SII)
Liz est consultante et développeuse Blockchain chez SII (Société pour l'informatique industrielle), une entreprise de services numériques basée à Paris, implantée partout en France et à l'international. En parallèle, donne des cours sur la Blockchain à l'école d'ingénieurs ECE Paris.
flow
Elise de Préville
Elise est consultante en Data Privacy et Cyber sécurité chez KPMG.
flow
Aroussia Maadi (Orange)
Aroussia est team Manager chez Orange, en charge d'une équipe de spécialistes en bases de données à la DSI d''Orange. Elle accompagne les applications du SI dans la construction d'architectures de bases de données et assure le maintien en conditions opérationnelles des plateformes. Elle est aussi investie dans la société civile, pour l'empowerment des femmes, en particulier en Afrique.
flow
Amina Maïza
Amina est ingénieure études et développement en Java/JEE chez Vizeo Technologies.
flow
Maud Franca (CDC)
Maud est Directrice Adjointe du Programme des Investissements d’Avenir en charge de l’économie numérique, Banque des Territoires, Groupe Caisse des dépôts (CDC). Membre de la cellule nationale French Tech, mentor et aux boards de startups.
flow
Chloé-Agathe Azencott
Chloé-Agathe est chargée de recherche au Centre de Bioinformatique de MINES ParisTech et de l'Institut Curie. Cofondatrice de la branche parisienne du meetup Women in Machine Learning and Data Science.
flow
Béatrice Moulin et Clara Deletraz (Switch Collective)
Béatrice et Clara sont cofondatrices de la startup Switch Collective.
flow
Laurence Devillers
Laurence est chercheur et Professeur en Intelligence Artificielle à Sorbonne Université/LIMSI-CNRS, équipe de recherche "Dimensions affectives et sociales dans les interactions parlées". Membre du comité de réflexion sur l’éthique du numérique (CERNA) d’Allistène, Auteure de « Des Robots et des Hommes : mythes, fantasmes et réalité », Plon 2017.
flow
Sophie Viger
Sophie est Directrice de la Web@cadémie, de la Coding Academy by Epitech et directrice pédagogique du Samsung Campus.

Derniers commentaires

“Le pari haut de gamme de Free (analyse complète de @olivez ) Free, champion du low cost, se…...”
“Ciao SANS le HDR10+ et les metadatas dynamiques? PAS de Dolby Vision? Xiaomi Mi TV S à 50eur : 4K/60 et Dolby Vision compatible OK j'ai free et j'ai compris...le SON = Devialet, réglez la facture de...”
“Bonjour, votre travail m'a l'air vraiment très complet et je me demande où est-ce que je vais trouver le temps pour vous lire. "Selon le Gartner, l’IA était la première des trois grosses tendances de...”
“Aux dires de mes amis gestionnaires IXP, Free utilise actuellement en déploiement de nouvelles zones FTTH du CG-NAT ( partage de l'adresse IPv4+port -ce qui revient à attribuer à différents clients la même adresse...”
Répondre
Olivier Ezratty
sur Le pari haut de gamme de Free :
“Bonjour, Le processeur du player, le Snapdragon 835 gère la résolution 4K mais pas la 8K, donc c'est cuit de ce côté là. Le port HDMI indiqué esn un 2.1 mais le 835 ne supporte visiblement que le 2.0A. Seul le...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Catégories

Tags


Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.