Quantinuum Helios advances

Publié le 12 novembre 2025 - Commenter -
PDF Afficher une version imprimable de cet article
  

In November 2025, Quantinuum released its Helios QPU with 98 qubits. It also announced it was sold to Singapore as part of a partnership with A*Star and to be deployed there in 2026. Helios got less attention than the recent news coming from Google (Willow, Echoes) and Microsoft (Majorana 1) but it deserves it. It is one of the best QPUs ever produced so far in the NISQ regime. I will look here at its key disclosed technical characteristics. It’s a first for me given I’ve mostly always published such posts only on superconducting and Majorana qubits.

Helios is fairly well described technically in Helios: A 98-qubit trapped-ion quantum computer by Anthony Ransford, M.S. Allman et al, arXiv, November 2025 (25 pages). Most of the information below comes from this preprint paper.

Helios ion trap

Like all Quantinumm past QPUs (quantum processing units), Helios is using trapped ions. These ions are trapped in vacuum above a semiconductor circuit which contains various electrodes that emit an electric field. This field traps the ions and also drives their displacement. Lasers and light forming devices are used to cool the ions, handle qubit gates and qubit readout.

Helios is using different qubit zones than the previous “race track” H2 system which supported 56 qubits. As shown below, the ion trap contains a circle shaped “ring storage” memory region for qubit storage used as a random-access memory, connected through a four-way X junction to an intermediate cache zone and a gate zone for single, two qubit gate and qubit readout operations, and finally, a leg storage used as a first in, last out memory.  The readout operation zone can accommodate for 16 ions and supports 8 two-qubit gates in parallel at a time. So we have in total 98 qubits but can handle two-qubit operations on only 16 qubits at a time. And before any such

In Helios, Quantinuum switched its ion elements. The data qubits are now barium ions 137Ba+ while ytterbium ions (171Yb+) are used for sympathetic cooling. In previous generations, barium ions were used for cooling while ytterbium ions were used for computing. As a result, the energy transitions to control qubits are not the same. It means that all the used lasers must have different wavelengths compared to the previous H2 system. Ions positioning is supported by 1,228 electrodes in the ion trap.

Laser drive

Helios uses 7 lasers in total if I count them well:

  • 369 nm for ytterbium ions sympathetic cooling.
  • a pair of 515 nm lasers with 8 GHz frequency splitting for single gate and Mølmer–Sørensen two-qubit gates (RZZ(θ)).
  • 614 nm, and 1,762 nm for state preparation, 1,762 nm being used to avoid measurement crosstalk and leakage errors.
  • 493 and 650 nm lasers for fluorescence readout.

The missing information here is the technology they are using to drive the laser fields onto the ions. You see in the picture above that laser beams are sent in free space on the ions at static positions in the “logic zone” for all active operations (gates, readout). There are not so many zones to control so this looks like reasonable. One can then ask how that will scale with a much larger number of qubits in multiple logic zones.

Fidelities

Qubit operations fidelities are very good with two-qubit gate fidelities at 99.92% and readout fidelities of 99.952% which is excellent to implement error correction. Single qubit gate fidelities are better, as usual with most qubit modalities, at 99.9975%.

The two-qubit gate used in their benchmark is a RZZ(π/2) gate, which is equivalent to a CNOT gate with applying single qubit gates to the affected qubits. Given the excellent single qubit gate fidelities, it means that synthetized CNOT or CZ gates using this RZZ(π/2) gate and single qubit gates would still exhibit an excellent fidelity.

This positions Helios as having the best qubit count/fidelities balance as shown in my updated fidelities scatter plot chart below. It is nearing the arbitrary viable NISQ zone that I defined a while ago, starting with 56 qubits at 99.9% fidelities, which shrinks as the number of qubits is growing. We can say that this is it with Helios.

It looks it can support quantum circuits with a couple thousand gates, before even starting to use quantum error mitigation. It puts it in a favorable position vs IBM’s Heron r3 156-qubit QPU, that a slightly lower fidelities in the bucket of blue dots in the slanted light grey zone, along with Google Willow and China’s Zuchongzhi 3.0.

Speed

Gate operations are quite slow, given the ions shuttling required between zones. It takes about 40 ms to move ions from the storage to the computing zone. The time per layer with 98 qubits is between 40 to 55 ms. 300 μs of cooling time is also needed after two qubit gates (IonQ/Oxford Ionics recently found a way to escape this). It is true that this chip enables many-to-many connectivity. But at the price of long ion shuttling operations. These shuttling operations are also needed for implementing single qubit gates.

In a podcast that I recorded earlier in 2025 with Chris Langer from Quantinuum, he said that “because we have this tight storage ring, we have higher density storage. It operates probably two to three times faster than H2, for twice the number of qubits.“. Also, the good qubit fidelities enable simpler error correction codes which will be faster in runtime and require fewer physical qubits per logical qubits.

Whatever, this low quantum circuit execution speed may become problematic. It’s about 100,000 times slower than superconducting qubit gates, which fare between 20 ns and 300 ns in most QPUs. The many to many connectivity is a plus here, but at a serious cost that is not entirely offset by this difference in gate speed. This problem will probably not show up in NISQ circuits execution, but will become a handicap for FTQC when error correction kicks-in with very large circuits, even when being more efficient. You need to do some math to incur for all these aspects and see their practical impact.

Supremacy experiment

In the recent arXiv describing Helios, Quantinuum conducted its own supremacy randomized Clifford circuit experiment. It which would consume 10^73 watts on a supercomputer with using a tensor network contraction classical equivalent. Their Guppy programming language is used in their tests. This sort of comparison doesn’t make more sense that their equivalent with Google Sycamore and Willow since these quantum circuits are not generating useful data and have no input data at all. When solving a real problem, the gap between classical and quantum computing is not that large, although with such a NISQ QPU, it may be possible to enter a quantum advantage regime for some physics simulations like with some Fermi-Hubbard model simulations, as demonstrated in Superconducting pairing correlations on a trapped-ion quantum computer by Etienne Granet, Sheng-Hsuan Lin, and Henrik Dreyer, arXiv, November 2025 (70pages).

We can still suspect that many interesting experiments will be achieve with Helios for solving various problems, particularly in quantum physics simulations.

Quantinuum also announced it supported 48 logical qubits with Helios, but without any scientific paper. Whatever will appear in such potential paper, you can guess that such logical qubits will increase fidelities only marginally. It may support deeper algorithms based on that. We will see later.

Form factor

Quantinuum did publish some pictures of its Helios QPU. It is quite bulky for a system supporting “only” 98 physical qubits. It’s got a lot of racks, on the left below, which are probably dedicated to their many lasers control.

The box on the right contains the “physics experiment” with an optical table, probably from Thorlabs. I don’t know what are the other racks made for. Probably some electronics control support for their laser shaping devices which they don’t document well. It this form factor remains the same while Quantinuum increases its number of supported qubits, it will be acceptable. It depends mainly on the number of lasers needed to drive a larger number of qubit gate operations.

Power consumption

What is the power consumption of this QPU? Quantinuum is not communicating on it. Given the enabling technologies that are used here, I would guess that it is reasonable, and below a couple kW. Particularly given the main power source are the lasers and they seem not to use any cryogenics (which would be at about 4K). You need some control electronics and an ultra-vacuum pump which costs less than a couple hundred watts.

In the various estimates that I have consolidated for future FTQC QPUs, trapped-ion systems were always in the low range power consumption. It is one of their strengths even though circuit execution may be much longer due to the shuttling mechanism they are using. That’s energy, not power. Energy can be accounted only for the execution of a given task. It is the role of standardized benchmarking to define such task.

By the way, Chris Langer from Quantinuum is one of our invited speakers at the Quantum Energy Initiative workshop that is planned in Barcelona, Spain, in May 18-22th, 2026 (see them below).

Scalability

While Helios qubit fidelities are impressive, you can wonder about how it will scale with using a larger number of physical qubits. Their plans is to release a new QPU in 2027 named SOL. It will host 192 qubits in a 2D frame. We can suppose that it will use multiple zone for gate logic. Quantinuum is quite reasonable compared to many other vendors, with planning new generations every two years instead of every year. They still plan to support tens of thousands of physical qubits and thousands of viable logical qubits on a single chip before having to interconnect multiple traps with whatever photonic links and quantum memory. This is a similar scaling strategy than with IonQ/Oxford Ionics.

By the way, you can notice that in its 2024 roadmap, Quantinuum was planning to have 96 qubits in Helios. It finally has 98. This is not a big deal given the space they have for storing qubits in their ring.

All in all, Quantinuum Helios is a key milestone for the development of NISQ (noisy) quantum computers. It will enable the execution of larger experimental circuits and will advance the knowledge in the buildout of early stage FTQC (fault-tolerant quantum computers).

Who’s next to impress us? Maybe IonQ/Oxford Ionics with their 256 qubit QPU planned in 2026. It it has the same fidelities as their 2-qubit recent experiment, it would extend further the reach of NISQ experiment, while we wait for larger systems and full FTQC support.

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 12 novembre 2025 Post de | Actualités, Quantique | 261 lectures

PDF Afficher une version imprimable de cet article     

Reçevez par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img


Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Last posts / derniers articles

Free downloads

Understanding Quantum Technologies 2025, a free 1,512 pages ebook about all quantum technologies (computing, telecommunications, cryptography, sensing):

image

Understanding Quantum Technologies 2025 Key takeaways, a 36 pages version with key takeaways from the eponymous book.

image

The Two-Spin Enigma: From the Helium Atom to Quantum Ontology, a quantum foundations paper coauthored with Philippe Grangier, Alexia Auffèves, Nayla Farouki and Mathias Van den Bossche (paper backstory).
image

Voir aussi la liste complète des publications de ce blog.

Derniers commentaires

“Bonjour Je croyais que la découverte de la dualité ondes particules c'était Einstein en 1905 (Prix Nobel en 1923)...”
“Bonjour Olivier, Encore merci pour ce livre, c'est vraiment chouette je trouve de partager tes recherches au plus grand nombre (et au commun du mortel) sans attendre une contrepartie. C'est même devenu rare. Du...”
“"L’électorat s’est incroyablement diversifié avec des lecteurs qui démarrent dans le quantique" On vote tous pour Olivier !!!...”
“What a job (again !). And finally LaTeX :-). (Before ReFormuLaTeX...”
“Merci Lydia pour la précision. L'intérêt de la QFT est variable : pas en termes d'avantage quantique car elle joue un rôle mineur de ce point de vue-là face à l'exponentiation modulaire dans la QPE et Shor qui...”

Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


 

RRR

 
S
S
S
S
S
S
S
img
img
img

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
QFDN
Expo
791 photos
albth
Remise Légion d'Honneur Philippe Herbert Jul2021
2021
15 photos
albth
Vivatech Jun2021
2021
120 photos
albth
Visite C2N Palaiseau Mar2021
2021
17 photos
albth
Annonce Stratégie Quantique C2N Jan2021
2021
137 photos
albth
Maison Bergès Jul2020
2020
54 photos
albth
Grenoble Jul2020
2020
22 photos

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Elle circule dans différentes manifestations. J'ai réalisé entre 2011 et mi 2023 plus de 800 portraits photographiques de femmes du numérique avec une représentation de tous les métiers du numérique.

Les photos et les bios de ces femmes du numérique sont présentées au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Gaëlle Rannou
Gaëlle est étudiante à 42 Paris et tutrice de l’équipe pédagogique (en 2021).
flow
Jehanne Dussert
Jehanne est étudiante à l'école 42, membre d'AI For Tomorrow et d'Open Law, le Droit ouvert. Elle est aussi fondatrice de "Comprendre l'endométriose", un chatbot informant sur cette maladie qui touche une personne menstruée sur 10, disponible sur Messenger. #entrepreneuse #juridique #santé
flow
Chloé Hermary
Chloé est fondatrice d'Ada Tech School, une école d'informatique alternative et inclusive dont la mission est de former une nouvelle génération de talents diversifié à avoir un impact sur le monde. #entrepreneuse #formation
flow
Anna Minguzzi
Anna est Directrice de Recherche au CNRS au Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC) à Grenoble. #quantique
flow
Maeliza Seymour
Maeliza est CEO et co-fondatrice de CodistAI, qui permet de créer une documentation du code informatique par une IA.
flow
Candice Thomas
Candice est ingénieure-chercheuse au CEA-Leti, travaillant sur l’intégration 3D de bits quantiques au sein du projet Quantum Silicon Grenoble. #recherche #quantique
flow
Stéphanie Robinet
Stéphanie dirige un laboratoire de conception intégrée de circuits électroniques du CEA-Leti qui travaille sur des systèmes sur puces intégrés, des interfaces de capteurs, des interfaces de contrôle de qubits et de la gestion intégrée de l'énergie. #recherche #quantique
flow
Sabine Keravel
Sabine est responsable du business development pour l’informatique quantique chez Atos. #quantique #IT
flow
Céline Castadot
Céline est HPC, AI and Quantum strategic project manager chez Atos.
flow
Léa Bresque
Léa est doctorante, en thèse à l'institut Néel du CNRS en thermodynamique quantique, sous la direction d'Alexia Auffèves (en 2021). #quantique #recherche
flow
Emeline Parizel
Emeline est chef de projet web et facilitatrice graphique chez Klee Group, co-fondatrice TEDxMontrouge, gribouilleuse à ses heures perdues, joue dans une troupe de comédie musicale, co-animatrice de meetups et est sensible à l’art et à la culture. #création
flow
Elvira Shishenina
Elvira est Quantum Computing lead chez BMW ainsi que présidente de QuantX, l'association des polytechniciens du quantique. #quantique
flow
Marie-Noëlle Semeria
Marie-Noëlle est Chief Technology Officer pour le Groupe Total après avoir dirigé le CEA-Leti à Grenoble. #recherche
flow
Gwendolyn Garan
Gwendolyn est travailleuse indépendante, Game UX Designer, Game UX Researcher (GUR) et 2D Artist pour le jeu vidéo, étudiante en Master 2 Sciences du Jeu, speaker et Formatrice sur l'autisme et la neurodiversité, l'accessibilité et les systèmes de représentation dans les jeux vidéo. #création #jeuvidéo
flow
Alexandra Ferreol
Alexandra est étudiante d'un bachelor Game Design à L'Institut Supérieur des Arts Appliqués (année scolaire 2019/2020) #création #jeuvidéo
flow
Ann-elfig Turpin
Ann-elfig est étudiante en deuxième année à Lisaa Paris Jeux Vidéos (Technical artist, 3D artiste), année scolaire 2019/2020. #création #jeuvidéo