


Opinions Libres

le blog d'Olivier Ezratty

Que peut-on faire avec le Quantum Machine Learning?

L'un des domaines d'applications du calcul quantique est le machine learning. Cela fait des années que de nombreux algorithmes de machine learning et même de deep learning ont été conçus pour les calculateurs quantiques. Ils devraient en théorie permettre d'accélérer certains calculs, notamment ceux de l'entraînement des modèles associés. Mais tout ceci ne fonctionne pas encore de manière opérationnelle car les développeurs sont dépendants de contraintes matérielles. Les ordinateurs quantiques actuels, comme ceux d'IBM, ne sont pas encore assez puissants (en nombre de qubits) et fiables (en termes de bruit pendant les calculs car ceux-ci ont une nature profondément analogique). Comme cela a pu être le cas pour les débuts du machine learning et du deep learning, la théorie logicielle progresse donc en parallèle avec le matériel. On attend encore l'étape équivalente à celle de l'arrivée des GPU de Nvidia en 2012 qui a fait décoller le deep learning.

Nous évoquons tous ces sujets dans ce 27e épisode des entretiens **Decode Quantum** toujours coproduit avec **Frenchweb / Decode Media** et **Richard Menneveux**. Nous l'avions déjà rapidement traité, parmi d'autres sujets, avec **Iordanis Kerenidis** en octobre 2020. Cette fois-ci, **Fanny Bouton** et moi-même étions avec Nicolas Gaude et Michel Nowak, tous deux de la startup **Prevision.io**.

Nicolas Gaude est le CTO et cofondateur en 2017 de **Prevision.io**, une startup de l'IA et du machine learning qui vise à automatiser la sélection de modèles de machine learning en fonction des données à traiter. Il était auparavant Chief Data Scientist à La Poste après un passé chez Bouygues Telecom et chez NDS, un fournisseur de logiciels pour les set-top-boxes de la TV numérique, un univers technologique où j'avais sévi entre 2006 et 2013.

Michel Nowak est en charge de la recherche en algorithmie quantique chez Prevision.io depuis 2 ans.

D'habitude, nos invités sont souvent polytechniciens ou normaliens, ils ont souvent croisé Alain Aspect ou des personnalités comme le prix Nobel Serge Haroche. Là, bien non. Ils ont par contre un point commun qui nous rapproche d'un autre vortex du quantique en France : ils ont tous les deux fait la même école d'ingénieur à **Grenoble**, Phelma, avec 15 ans d'écart. Cette école est actuellement juste à l'entrée principale de la presque-Île de Grenoble où l'on trouve notamment le CEA-Leti et un peu plus loin d'Institut Néel du CNRS. Et puis Michel Nowak a en plus réalisé une thèse de doctorat en physique nucléaire au **CEA**, terminée en 2018. Donc, là, cela nous fait tout de même « 2 points » dans le bingo quantique français avec Grenoble et le CEA.

Vous pouvez télécharger l'épisode avec ce lien.

Dans cet épisode d'un peu plus d'une heure :

- Nous revenons sur l'habituelle question à nos invités : quand sont-ils tombés dans la marmite du quantique
 ? Nicolas nous parle notamment de sa lecture de « L'impensable hasard » de Nicolas Gisin et de sa découverte des inégalités de Bell.
- Nos invités nous expliquent ce qui a amené Prevision.io qui est une startup de l'IA à s'intéresser au calcul quantique. Quels sont les cas d'usage ?
- Ils nous décrivent les grands concepts mis en œuvre dans la programmation quantique pour le machine learning. On parle de linéarités et de non linéarités ! De la manière de s'appuyer sur le bruit des calculateurs quantiques actuels dénommés NISQ (noisy intermediate scale quantum computers).
- Nous évoquons l'enjeu clé du chargement des données d'entraînement.
- Ce qu'ils ont appris ces dernières années sur l'évolution (incessante) de l'état de l'art dans les technologies quantiques, notamment côté matériel.
- Les algorithmes quantiques sont-ils pertinents pour l'entraînement ou pour les inférences ?
- Que peut-on faire avec les ordinateurs quantiques d'aujourd'hui dans le domaine de la QML ?
- À quel rythme ces capacités vont-t-elles s'étendre ? Quels sont les besoins au niveau hardware ? Nombre et caractéristique des qubits ? Disponibilité de mémoire quantique (qRAM) ?
- Est-ce qu'il est possible de faire de la QML avec des quantum annealers et des simulateurs quantiques ?
- Quelle est la roadmap de prevision.io dans la QML ?
- Enfin, nous discutons du pourquoi il y-a-t-il si peu de startups en logiciels quantiques en France (avec eux, il y a **Veriqloud**, **Qubit Pharmaceuticals**, **Quantfi** et c'est à peu près tout). Que faudrait-il faire pour qu'il y en ait plus ? Ci-dessous, une cartographie des entreprises du quantique en France.

A noter dans l'actualité, l'acquisition annoncée le 20 mai de Muquans et Kylia par ixBlue. Cela consolide le marché des technologies habilitantes en photonique et des capteurs français dans une grande PME française de plus de 700 salariés.

Vous pouvez enfin retrouver tous les anciens épisodes de Decode Quantum.

Cet article a été publié le 21 mai 2021 et édité en PDF le 16 mars 2024. (cc) Olivier Ezratty – "Opinions Libres" – https://www.oezratty.net