

the road to quantum computing scalability, from QEC to FTQC

olivier ezratty

{ author | ... }
Q2B Paris, March 8th, 2024
olivier@oezratty.net www.oezratty.net @olivez

raw algorithm fidelities requirements

desired error rate $< \frac{1}{N \times D}$

		required				
N D		error rate	required	available		
qubits	depth	(%)	fidelity (%)	fidelity (%)		
50	100	0.02000%	99.98%	99.30%		
133	300	0.00251%	99.9975%	99.6%		
433	1000	0.00023%	99.9998%	98%		
1121	2000	0.00004%	99.99996%	N/A		

but... QEC cost discrepancy between Clifford and non-Clifford gates

qubit errors sources

how to improve qubit fidelities? *

materials

manufacturing

tune qubit parameters bosonic qubits

Cross-Cross Resonance Gate

Kentaro Heya1,2,* and Naoki Kanazawa1,*

¹ IBM Quantum, IBM Research Tokyo, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan ² Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

 Yosep Kim,^{1,*} Alexis Morvan,¹ Long B. Nguyen,¹ Ravi K. Naik,^{1,2} Christian Jünger,¹ Larry Chen,² John Mark Kreikebaum,^{2,3} David I. Santiago,^{1,2} and Irfan Siddiqi^{1,2,3}
 ¹Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Date: December 21 2022)

use different primary gates

* using here the example of superconducting qubits

improve control signals quality

John Preskill @ Q2B SV 2023

What we have now. NISQ is valuable for scientific exploration. But there is no proposed application of NISQ computing with *commercial* value for which quantum advantage has been demonstrated *when compared to the best classical hardware running the best algorithms for solving the same problems*.

What we can reasonably foresee. Nor are there persuasive theoretical arguments indicating that commercially viable applications will be found that do *not* use quantum error-correcting codes and fault-tolerant quantum computing.

logical qubits and FTQC

physical qubit

error rates ≈0.1%

logical qubit

error rate $<10^{-8}$ to $<10^{-15}$

error correction code

threshold, physical qubits overhead, connectivity requirements, syndrome decoding and scale

fault tolerance

avoid error propagation and amplification implement a universal gate set fault-tolerant results readout

tens to thousands qubits

threshold and break-even

logical qubit error rate lower than physical qubit error rate. p_L < p, depends on p_{th}, p and d physical qubit fidelity needed to create logical qubits with better fidelities. at threshold, # of required physical qubits for surface codes is infinite! practically needs p/p_{th} < 10%

existing logical qubits above break-even

Sycamore 72-qubit processor single distance-5 logical qubit – July 2022

it slightly outperforms a distance-3 logical qubit but with providing a higher error rate (2.1%) than the underlying physical qubits (0.7%).

Harvard-MIT-QuEra 48 logical qubits – December 2023

logical 2-qubit gate error rates at 7% with distance-7 surface code while physical qubit error rate is 0.5%.

a surface code logical qubit by Rajeev Acharya et al, processor based on December 2023 (32 pages). quantum et al Logical o . Lukin and pages) atom arrays by Dolev Bluvstein, Mikhail (44 scaling 2023 (2 ebruary errors auantum July 202 sources: Suppressing Nature reconfigurable Google AI,

qubits for QEC-FTQC?

dynamically adjusted against the algorithm size

favored QEC codes per qubit types

	atoms		electron	photons		
				SiGe ψ ₁) ψ _R)		$ \begin{array}{c} $
	cold atoms	trapped ions	superconducting	silicon	NV centers	photons
surface codes	Yes		Yes	Yes		Yes
color codes	Yes			Yes		
QLDPC	Yes	Yes	Yes			
Stabilizers					Yes	
Bacon-Shor		Yes				
Steane		Yes				
Bosonic codes			Yes			Yes (GKP)
MBQC based						Yes

some advanced QEC enabling techniques

biased noise with bosonic qubits

qubits self-correct bit flip errors and QEC is involved to correct phase flips. Flip-error reduction is exponential when phase-error cost is linear [Alice&Bob, AWS].

qLDPC codes

constant depth, lower overhead, but nonlocal syndrome measurements required requiring n-to-n qubit connectivity or movable qubits [IBM, Alice&Bob, QuEra, Quantinuum, ...].

erasure conversion

dominant errors occur at known locations are easier to detect and correct. E.g. with dual-rails superconducting qubits and some cold-atoms setups.

some QEC/FTQC challenges

Processing adding at 8 fittor?

syndrome decoding speed and scale enabling technologies scalability and energy consumption long distance coupling speed-losses trade-offs

scaling QEC and FTQC across QPU interconnects

Beta particles x-rays interact in the surface create ionization B y-rays are deeply penetrating electron-hole pairs (e⁻ / h⁺) e e continuously in dense materials Si Phonons created by e⁻ / h⁺ pairs can transport energy through bulk Impinging radiation Energy relaxation carriers Superconducting phenomenon Photon (γ): $\land \land \checkmark$ Ionization: e⁻ / h⁻ Cooper pair: Phonon: Ouasiparticle: Beta $(\beta^{-/+})$: \longrightarrow

uncorrelated and crosstalk errors

needed for chemical simulations, financial portfolio optimizations, break RSA 2048 keys

logical qubits requirements

compute FeMoCo... energy ground state

needs...

2,142 logical qubits

4M physical qubits

4 days computing time

"simulating the ground state of active-space models of FeMoCo."

source: Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction by Joonho Lee, Craig Gidney et al, July 2021 (62 pages). <u>https://journals.aps.org/prxquantum/pdf/10.</u> <u>1103/PRXQuantum.2.030305</u> PRX QUANTUM 2, 030305 (2021)

Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction

Joonho Lee⁽⁰⁾,^{1,*,§} Dominic W. Berry,^{2,†,§} Craig Gidney,³ William J. Huggins,³ Jarrod R. McClean,³ Nathan Wiebe,^{4,5} and Ryan Babbush⁽⁰⁾,[‡]

¹Department of Chemistry, Columbia University, New York, New York, USA

²Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia

³ Google Quantum AI, Venice, California, USA

⁴Department of Physics, University of Washington, Seattle, Washington, USA

⁵ Pacific Northwest National Laboratory, Richland, Washington, USA

(Received 12 December 2020; revised 7 April 2021; accepted 24 May 2021; published 8 July 2021)

	Reiher et al. I	FeMoCo [23]	Li et al. FeMoCo [36]	
Algorithm	Logical qubits	Toffoli count	Logical qubits	Toffoli count
Reiher <i>et al.</i> [23] (Trotter)	111	5.0×10^{13}		
Campbell and Kivlichan et al. [52,53] (qDRIFT) (D16), (D17)	288	5.2×10^{27}	328	$1.8 imes 10^{28}$
qDRIFT with 95% confidence interval (D34)	270	1.9×10^{16}	310	1.0×10^{16}
Berry et al. [9] (single factorization) (B16), (B17)	3,320	$9.5 imes 10^{10}$	3,628	1.2×10^{11}
Berry et al. [9] (sparse) (A17), (A18)	2,190	$8.8 imes10^{10}$	2,489	$4.4 imes 10^{10}$
von Burg et al. [10] (double factorization) (C39), (C40)	3 725	1.0×10^{10}	6,404	6.4×10^{10}
This work (tensor hypercontraction) (44) (46)	2,142	5.3×10^9	2,196	$3.2 imes 10^{10}$

LNO battery simulation

Google simulation of LiNiO₂ batteries from 75K to 3M logical qubits and 91M to 6G physical qubits

computing time from one year to 2,739 years

source: Fault-tolerant quantum simulation of materials using Bloch orbitals Nicholas C. Rubin et al, February 2023 (58 pages).

System	LCU	k-mesh	λ	Num. Spin-Orbs.	Toffolis	Logical Qubits	Physical Qubits [M]	run time [days]
$R\bar{3}m$	Sparse	[2, 2, 2]	120382.037	116	6.16×10^{13}	166946	242.72	1.51×10^{4}
		[3, 3, 3]	718377.133	116	3.57×10^{15}	1625295	2808.82	9.82×10^{5}
	\mathbf{SF}	[2, 2, 2]	183778.821	116	7.86×10^{13}	89162	129.77	1.93×10^{4}
		[3, 3, 3]	2966279.293	116	4.60×10^{15}	404723	699.68	1.27×10^{6}
	\mathbf{DF}	[2, 2, 2]	10730.422	116	4.97×10^{12}	149939	180.16	1.08×10^{3}
		[3, 3, 3]	44794.803	116	7.28×10^{13}	598286	869.02	1.79×10^{4}
C2/m	Sparse	[2, 2, 1]	58422.522	116	1.03×10^{13}	83532	100.47	2.53×10^{3}
		[4, 4, 2]	893339.394	116	5.37×10^{15}	3051285	5272.93	1.48×10^{6}
	\mathbf{SF}	[2, 2, 1]	95803.204	116	2.05×10^{13}	44657	53.90	5.05×10^{3}
		[4, 4, 2]	2899609.300	116	5.23×10^{15}	405310	700.69	1.44×10^{6}
	\mathbf{DF}	[2, 2, 1]	4873.648	116	1.18×10^{12}	75178	90.44	2.56×10^{2}
		[4, 4, 2]	51416.281	116	9.82×10^{13}	598736	869.68	2.41×10^4
P2/c	Sparse	[1, 1, 1]	84977.359	464	2.06×10^{13}	99918	120.21	5.07×10^{3}
		[2, 2, 2]	1627121.892	464	1.67×10^{16}	3182362	6454.14	4.59×10^{6}
	\mathbf{SF}	[1, 1, 1]	201894.726	464	8.74×10^{13}	92786	135.04	2.15×10^{4}
		[2, 2, 2]	5666363.179	464	2.07×10^{16}	839487	1450.95	5.68×10^{6}
	\mathbf{DF}	[1, 1, 1]	2753.901	464	9.72×10^{11}	75834	91.23	2.11×10^{2}
		[2, 2, 2]	40788.113	464	1.40×10^{14}	1192900	1732.40	3.44×10^{4}
$P2_1/c$	Sparse	[1, 2, 1]	105584.297	232	3.39×10^{13}	182864	265.83	8.34×10^{3}
		[2, 4, 2]	1714723.913	232	1.50×10^{16}	3116825	6321.24	4.12×10^{6}
	\mathbf{SF}	[1, 2, 1]	271178.934	232	8.92×10^{13}	96882	140.98	2.19×10^{4}
		[2, 4, 2]	7798992.981	232	$2.13{\times}10^{16}$	438080	757.32	5.85×10^{6}
	\mathbf{DF}	[1, 2, 1]	3958.111	232	1.27×10^{12}	75383	90.69	2.76×10^{2}
		[2, 4, 2]	46189.645	232	1.23×10^{14}	1192758	1732.20	3.02×10^{4}

TABLE VI. Quantum Resource estimates for all four LNO structures normalized by the number of formula units represented in each simulation cell. R $\bar{3}m$ and C2/m are both one formula unit while P2/c is four formula units and P2₁/c is two formula units. The sparse threshold is selected to be 1.0×10^{-4} , the SF the auxiliary index is truncated at eight times the number of molecular orbitals, and the DF the second factorization is truncated at 1.0×10^{-4} .

discussion