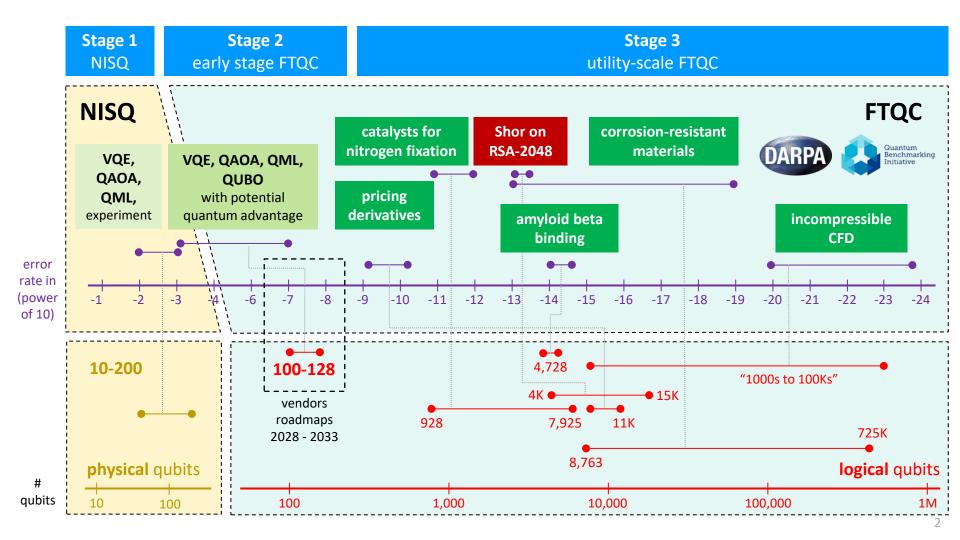
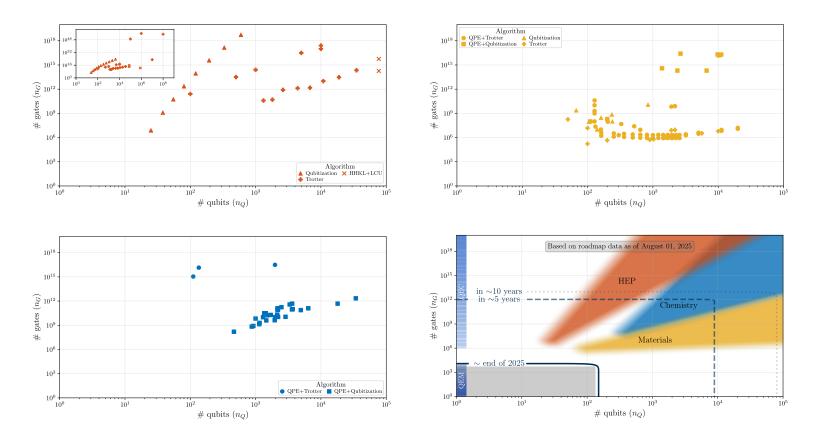


an (educated) end-user view of hardware roadmaps

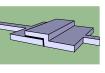



Olivier Ezratty

(... | free electron | QEI cofounder | ...)

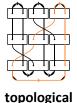
olivier@oezratty.net www.oezratty.net @olivez

Q2B Paris, September 24th, 2025



<u>Quantum Computing Technology Roadmaps and Capability Assessment for Scientific Computing - An analysis of use cases from the NERSC workload</u> by Daan Camps, et al, arXiv, September 2025 (69 pages).

>90 QPUs industry vendors!



electrons controlled spin and microwave cavities

photons

trapped ions

FOXCONN

○ IONQ eleQtron

CRYSTAL

🔥 QUDORA

ZuriQ

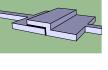
⊘AQT

NEQT

atom

computing

,\RCHER



atoms

annealing

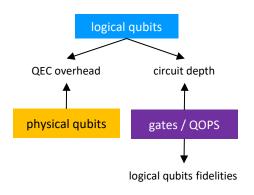
superconducting

2025:

84 qubits (Ankaa)
36 qubits (better fidelities)

August 10, 2018

2025: 36 qubits (Forte)

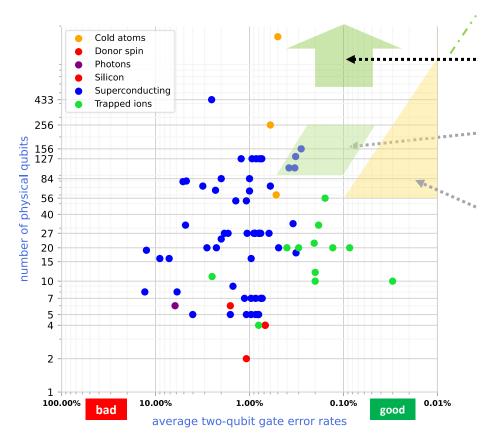

IonQ Has the Most Powerful Quantum Computers With 79 Trapped Ion Qubits and 160 Stored Qubits

December 11, 2018 by Brian Wang

what should we have in FTQC roadmaps?

bare minimum

- # logical qubits.
- supported circuit size / logical error rates.
- # physical qubits.

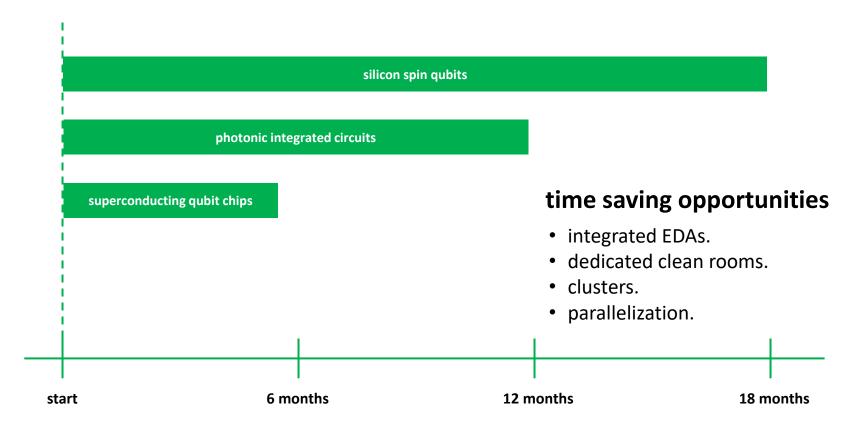

nicer to have

- clock speed and QLOPs/s.
- planned QEC codes and methods.
- processor size & reliance on QPU interconnect.
- peak power consumption in W.
- components operating temperature.
- QPU weight and size.
- operational constraints like temperature variability.
- components MTBF.
- capex/opex cost structure.

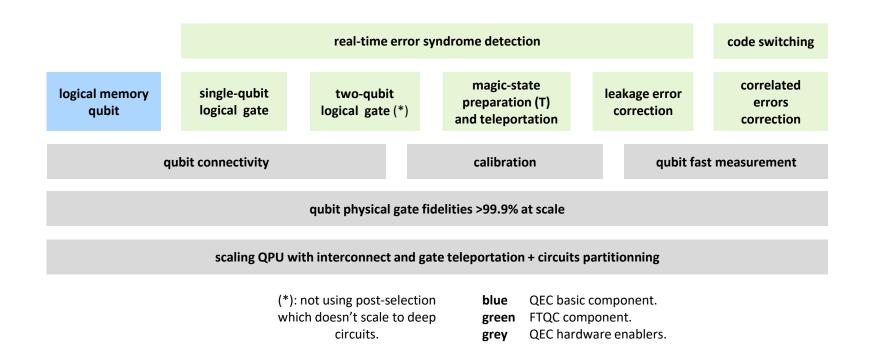
operational metrics

	IBM	FIX	156x		4FV	200				2000 1B		
superconductors & spins	IQM	5K 150	7.5K	10K 4-36	15K 60-180	100M	240-720	600-1800		18	2400-7200	
				1K	5K		40K	100K 5,000 1G		1M		
	OØC _	16 1K	4		200 1M		100	5,000 16			50K 1T)
	ALICE & BOB		48		250		2K 1M					
	Quantique _				100	25-45	50-100	180-360	1,400			
	Ci quobly	2-10	64	256	1K 100K	4K 1M	20K ≈1G	120K ≈1T	1M ≈100T			
cold atoms	? Pasqal	140	2	20 200+		100	200 10K					
	QuEra>	30 3K	100 >10K									
	Infleqtion	2 1.6K	>10 8K		>100 40K							
photons tapped ions	QUANTINUUM	~ 50 96		~100 192		~100s 1000s						
	ONQ IONQ	64	12 256	800 10K 10M	1,600 20,000	8,000 200K 1T	80,000 2M 1T)				
	Quantum Art	50		1,000		500 12,000		1,000s 40,000		10,000s >1M		
	Ψ PsiQuantum						~100s 1M					
	QUANDELA			10 50K		50s 1M						
		2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035

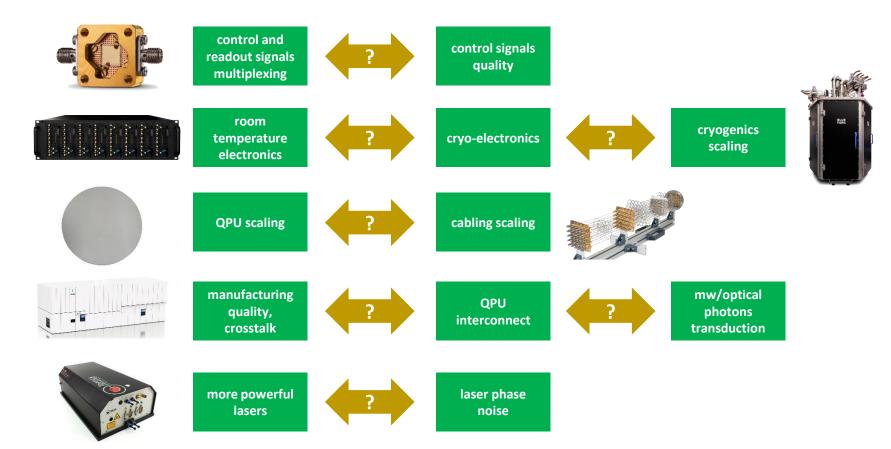
challenge 1: qubit infidelities


route to FTQC, requiring a large number of quality qubits

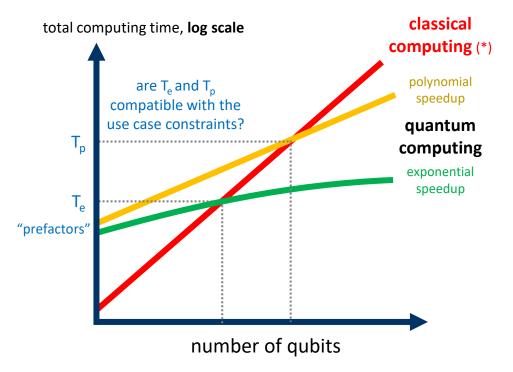
quantum error mitigation NISQ utility window


viable NISQ zone in a quantum advantage regime without QEM (hard to obtain)

> improving qubit fidelity at scale? new correlated noise sources? lower chips variability?


challenge 2: chips iteration cycles

challenge 3: QEC/FTQC integration



challenge 4: enabling technologies

challenge 5: software

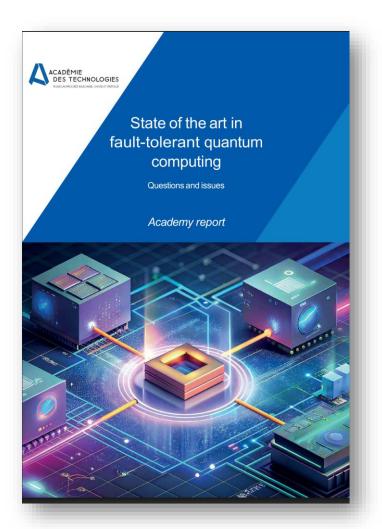
practical vs theoretical speedups compiler & optimizers scalability classical pre- and post-processing costs (chemistry) verification, certification, benchmarking. classical computing progress (MPS, DMRG).

inspired by Opening the Black Box inside Grover's Algorithm

by E. Miles Stoudenmire and Xavier Waintal, PRX, November 2024.

(*) for a fair comparison, the classical computer can be as expensive and/or energy hungry as the QPU.

end-user dialog with vendors


vendors to end-users

- explain how challenges 1, 2, 3 and 4 are handled.
- information on R&D workload distribution (partners, academics).
- adopt benchmarking methods.
- update roadmap every year.

end-users to vendors

- provide key use cases needs and resource estimates.
- adopt benchmarking methods.
- learn classical best-in-class methods and hardware.
- track vendors roadmaps every year.
- look at QPU economics.

next: Thursday 25th, 4:00 PM

the energetics challenges of FTQC

Olivier Ezratty

(... | free electron | QEI cofounder | ...)

olivier@oezratty.net www.oezratty.net @olivez

Q2B Paris, September 25th, 2025

discussion

