

the energetics challenges of FTQC

Olivier Ezratty

(... | free electron | QEI cofounder | ...)

olivier@oezratty.net www.oezratty.net @olivez

Q2B Paris, September 25th, 2025

potential quantum computing benefits

- computing faster than classical systems.
- solving problems inaccessible to classical computers.

 reducing required training data, particularly for machine learning tasks.

 improving results quality: chemical accuracy, better heuristics, etc.

- energy advantage (NISQ).
- energy acceptability (FTQC).

 usefulness: which depends on the stakeholder (fundamental research, governments, industry).

practical benefits

speedup results quality

required data

costs (TCO)

capex + other opex

energy, power

increased revenue reduced costs improved service quality competitiveness

versatility and platform effects

improves

externalities, including economies of scale

$$ROI = \frac{EB}{TCO} \gg 1$$

3

sizing QPU's energetic impact...

classical costs: pre- and post-processing

classical costs: compilation

architecture	Von Neuman / Princeton	in-memory processing.
classical compilation cost	fixed cost vs data. used by the compiled code.	variable cost vs data embedded <i>in</i> circuits/models.
classical data-ingestion	fast.	slow.
compilation	done once.	NP hard circuit optimization.

research & engineering questions:

- compilation cost estimations with large-scale algorithms?
- practical optimization?
- impact on business operations applications with fast duty cycles?

beyond the first breakeven logical qubits

number n_q of physical qubits per logical qubit

$$n_q = 2d^2 - 1$$

Quantum error correction below the surface code threshold by Rajeev Acharya, Frank Arute, Michel Devoret, Edward Farhi, Craig Gidney, William D. Oliver, Pedram Roushan et al, Google, arXiv, August 2024.

$$d = 2 \frac{\ln(p_L/A)}{\ln(p/p_{thr})} - 1$$

$$N_{phys} = 2d^2 - 1$$
 $\Lambda = \varepsilon_d/\varepsilon_{d+2} \approx p_{thr}/p$

d = surface code distance N_{phys} = number of physical qubits

 N_{phys} -opt = number of physical qubits with optimization

 N_{phys} -total = number of physical qubits with FTQC

p = physical error rate A = between 0.03 and 0.1 p_{thr} = threshold error rate p_{I} = target logical error rate

 Λ (lambda) = error reduction factor when growing d by 2

p_L	10-6	10-7	10-8	10 ⁻⁹	10 ⁻¹⁰	10 ⁻¹¹	10 ⁻¹²	10 ⁻¹³
d	27	33	39	45	51	57	63	69
N_{phys}	1,483	2,211	3,082	4,099	5,260	6,565	8,015	9,609
N _{phys} -opt	742	1,106	1,542	2,050	2,630	3,283	4,008	4,805
N _{phys} -total	1,457	N/A	N/A	N/A	N/A	N/A	N/A	N/A

10K qubit chips

QPU interconnect

extra qubits are needed to perform syndrome extraction, interconnect logical qubits, and support operations like state injection and distillation

multiple QPUs interconnect options

growing complexity with rough estimates thresholds requiring these techniques

The GQI Quantum Resource Estimator Playbook - Quantum Computing Report by Doug Finke, Quantum Computing Report, August 2024.

computing time optimization framework

parameters like the cost per physical gate. The EFP framework is focused here on computing time optimization.

current HPC power consumption

Power consumption distribution of the top documented 211 HPC in the TOP500 as of June 2025

Top500, June 2025
MW in peak power consumption

QPU vs HPC power scale guesstimates

(cc) Olivier Ezratty, 2025.

discussion

