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what is a photon?
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quantized electromagnetic field



guantum vacuum fluctuations

according to quantum field theory and Heisenberg
indetermination principle, vacuum contains harmonic
oscillators with zero-point energy:
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What is a photon?

Anti-photon Ambiguous term “photon”
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Abstract. It should be apparent from the title of this
article that the author does not like the use of the word

“photon”, which dates from 1926. In his view, (hére'is no'
such thing as a photon. Only a comedy of errors and
historical accidents led to its popularity among physicists
and optical scientistsil admit that the word is short and
convenient. Its use is also habit forming. Similarly, one

might find it convenient to speak of the “aether” or “vac- P

Light “particle”

Discrete energy E=hf

uum” to stand for empty space, even if no such thing
existed. There are very good substitute words for
“photon”, (e.g., “radiation™ or “light”), and for “photo-
nics” (e.g, “optics” or “quantum optics”). Similar objec-

tions are possible to use of the word “phonon”, which
dates from 1932. Objects like clectrons, neutrinos of finite
rest mass, or helium atoms can, under suitable conditions,
be considered to be particles, since their theories then have
viable r lativistic and limits. This pa-
per outlines the main features of the quantum theory of
radiation and indicates how they can be used to treat
problems in quantum optics.

Non-classical statistics

PACS: 12.20.-m; 42.50.-p

https://www.youtube.com/watch?v=xteugbb-bdU
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photon modes encode information
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spectral mode
frequency or wavelength

spatial mode
where is the photon in space
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temporal mode
when the photon was emitted

orbital angular momentum
twisted light modes with
helical phase fronts

a mode describes one property of a photon



photons in quantum computing
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trapped ions cold atoms

initialization

quantum gates
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optical or electromagnetic
tweezers

laser pulses
microwaves
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topological photons

single photon

DC current sources and
polarizers
interferometers,
microwave polar!zmg beam
splitters, ...

reflectometry
and quadrature

analysis single photon

detectors



slowing down atoms
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atoms moving towards the
photon receive a higher
frequency photon, shifting
towards blue
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photon is absorbed by the atom,
reducing its kinetic energy, the
atom reemits a less energetic
photon
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atom moving in the other
direction receive lower
frequency photons
towards red
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incident photon not
absorbed by the atom
since being under its
excitment level threshold
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controlling cold atoms with lasers “tweezers”
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controlling trapped ions with lasers
~
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Helios: A 98-qubit trapped-ion guantum computer by Anthony Ransford, M.S. Allman et al, arXiv, November 2025 (25 pages)
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controlling NV centers with lasers
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quantum photonics enabling techs
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electromagnetic spectrum

The human visible spectrum (light)
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400nm

22-26 GHz
1,3cm—-1,1cm

silicon electron spin qubits
control and readout

4-8 GHz
7,4cm —3,7 cm

superconducting qubits
control and readout
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photons qubits types and tools

qubits

angular orbital
path polarization moment

frequency photon number
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light guides optical delay line splitters birefringent filters polarizers dephasers
optical fibers of guides  used to synchronize split a light beam in two filters with two keep only one modifies photons
integrated in photons phase after identical beams refracting index polarity (circular) polarity or
nanophotonic going through various (linear) phase
components lengths fibers delay lines of Pockels

celles



inside a photon qubit QPU QUANDELA

computing qubits control electronics nanophotonic chipset
servers, network, laser, unique photon where quantum computation is done
software, data generator, quantum gates,

photons readout

B : light signals
I : electronic signals

qubits readout
photon detectors

control

phaser controls
in nanophotonic circuits

photon =4K
detectors cooling

guantum gates >
controls

laser control laser unique e e
: = %y
— - I photons ) “ same

generator
generator control cryocooler

i Il

= 4K nanophotonic chip
cooling

Quandela case

(cc) Olivier Ezratty, 2023-2025



indistinguishable photons

generation integrated photonic circuits unique photons detectors
<10K 300K 2K
u . & SINGLE QUANTUM
(QUANDELA VLE Lo
’ PHETBNICS 'P.h ) Sp.()t
. oton
QU
Sparrow 7Z )
Quantum I®LIGENTEC 1IDQ
BRIGHT @
PHOTOIEIQICS Quantum Opus

source : adapted from Photonic quantum bits by Pascale Senellart, june 2019 (31 slides)



nanophotonic circuits

wafer substrates
silicon

DFG laser waveguide QD spin-photon tunable Mach-Zehnder silicon on insulator (SOl)
%2 source interface interferometer
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single photon detectors
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Fig. 2. Fidelity versus the number of incoming photons m (blue points) with

N = 120 single-photon detectors. This plot was obtained by a second order
Andreas Fognini — Single Quantum Stirling expansion of Eq, 6.
18



key figures of merit

photon sources
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DV and CV photon qubits

quantum information

photon sources

representation

gates

photon detectors

players

discrete variables

discrete degree of freedom of a photon

Fock states: [0), |1),]2) ...
single or many photon properties

single indistinguishable photon
sources

density matrix

KLM model, MZI (Mach-Zehnder
Interferometer) gates,
measurement based

photon counters /detectors
APD, SNSPD, VLPC, TES

Y PsiQuantum
(JQUANDELA

Ny DUALITS

OUANTVM PHOTONICS

ORCA

continous variables

quadrature of a light field
coherent states, qumodes, spectral
and time modes

entangled photons sources
squeezed states, ...

Wigner function

determinist gates
modes measurement
gaussian and non gaussian gates

homodyne and
heterodyne detectors
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XANADU

boson sampling

multimode photons

unique photons source
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detectors
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the KLM model nature
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boso n S a m p I i N g The computational complexity of linear optics
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Quantum computational advantage using
photons by Han-Sen Zhong, Jian-Wei Pan
et al, arXiv, December 2020.

100 photon modes and detectors

z e

Authors: Scott Aaronson, Alex Arkhipov Authors Info & Claims

STOC '11: Proceedings of the forty-third annual ACM symposium on Theory of computing
https://doi.org/10.1145/1993636.1993682

Published: 06 |une 2011 Publication History, M) Check for updates
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Quantum computational advantage with a Robust quantum computational advantage
programmable photonic processor by lars with programmable 3050-photon Gaussian
S Madsen et al, Nature, June 2022. boson sampling by Hua-Liang Liu, Jian-Wei

Pan et al, arXiv, August 2025.
216 squeezed photon modes

still a sampling task, not a real 8,176 modes photon and 16 detectors
computational task
22
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Using Gaussian Boson Sampling to Find Dense Subgraphs

Juan Miguel Arrazola*
Xanadu, 372 Richmond Street W,

Boson sampling de
cation for solving pre
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Quantum algorithms are often designed with the
sumption that they can access the full power of uni
presently develop-
ing quantum devices have limited resource capabilities

sal quantum computation. However.

and are not fault-tolerant. Their emergence has moti-
vated a reexamination of methods for desi;
ith the focus now on harne:
of small-scale, noisy quantum comput-
£ gorithms for near-term (Iun es uu Tude
quantum simulators for many-body physi
tional algorithm:
tion algorithms
de [0-13].
Ism..n sampling is a limited model of quantum compu-
tation g

ng quantum
g the com-

putatios
Candidate

varia-

6), quantum approximate optimiza-
and machine learning on hybrid

cc

n by passing photons through a linear inter-
ferometer and observing their output configurations [14].
Significant efforts have been performed to implement bo-
son sampling [15-18], leading to the proposal of related

models such as sc shot boson sampling [19 and
Gaussian boson sampling that are more suitable

for experimental realizations. Morcover, boson sampling
devices are in principle capable of performing tasks that
cannot be efficiently simulated on classical computers, a
feature that has made them a leading candidate for chal-
lenging the extended Church-Turing thesis. In fact, the
primary objective of implementing boson sampling h.|~
so far been to demonstrate quantum supremacy,
ing the real-world application of such devices underdevel-
oped. A notable exception is the use of C
sampling for efficiently caleulating the vibroni
of molecules, [24-26], which provided the first clue of the
usefulness of this platform.

ssian boson

spectra

In this work, we show that Gaussian boson sampling
(GBS) can be used to enhance classical stochastic algo-
rithms for the densest k-subgraph (DES) problem. The
DES problem is NP-Hard [27] and defined through the
following optimization task: given a graph G with n ver-
tices, find the subgraph of k < n vertices with the largest
Among subgraphs with a fixed number of ver-
tices, the density and the number of edges are equivalent
quantities, and we hence refer to both inter
throughout this manuscript. Beyond its fund.

mental in-

are a prime candidate for e3
lems of practical interest is less well understood. Here we show that Gaussian

1 PrOVRUIIUGS 10 GO, W WS our i
h and simulated annealing algorithms and apply them through numerical
ntify the densest subgraph of a 30 vertex
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ibiting quantum supremac
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1 the NP-hard
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t quantity
nhanced ve
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araph.

terest in mathematics and theoretical computer science,
the DS problem has a natural connection to cluster-
ing problems with the goal of finding highly correlated
of data. Clustering has applications in a wide
range of fields such as data mining [28-31], bioinformat-
ics (32, 33], and finance [34)

Our approach uses a technique from Ref. [35] to encode
a graph into the GBS parad the probability
of observir 1 photon configuration is proportiol

subsets

to the number of pe
subgraph. We highlight a correspondence between the
number of perfect matchings in a subgraph and its den-
nmed GBS device

fect matchings of the corresponding

sity, meaning that a suitably pr
will prefer to output dense subgrap

lowing results in a companion papel
is a form of proportional sampling
enhance the stochastic element of |
heuristics for the DAS problem. |
roximation schemes are he
DES problem [
ing superpolynomial runtime may
stochastic algorithms.  Our findin,. ... .. .
oh, wh we introduce GBS-enhanced ln}'-
rch and simulated annealing
algorithms. This approach highlights a general principle

tions of random s

of using output samples from a GBS device to enhance
approximate solutions to optimization problems.
Applying GBS to the DkS problem.— The important
concepts of GBS are first briefly reviewed. In GBS,
photon-number detection is performed on a multi-mode
Gaussian state [22, 23, 38]. For an n-mode system,
le outputs of GBS by vectors S =

we denote the poss

(51 sn), where s; is the number of photons de-
»cted in output mode ¢. It was shown in Ref. that
the probability of observing an output pattern S is
. —1  Haf(A,
P(S) = [ag| T 2s) 1)

where 0g = o + 1g, /2, 0 is the (2n x 2n)-dimensional

nce matrix of the n-mode Gaussian state, and Ag

0 1 ) [Il)v,—er ] fixed by

is a submatrix of A = 1
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Boson Sampling for Molecular Vibronic Spectra

Joonsuk Huh,* Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean, and Alin Aspuru-Guzik?

Harvard Us

D«;m:lmml of Chemistry and Chemical Biology,

02138, United States

(Dntcd Dc(‘(mb(‘r 30, 2014)

Quantum computers are expected to b(' more efficient in performing certain computations than

any classical machine. U y, ¢l

seale quantum computer have not yet nllnvwd the

Recently, bor
classical com

with building a full-

peri ification of such an
oo “ ' ' ‘ractable on any
tup. Therefore,

ot molecular simulation  Cumue

thesis and thi
in relation to ...

ampling, at least
ful development

of a boson sampling apparatus wuuld not only answer such inquiries, but also yield a practical
tool for difficult molecular computations. Specifically, we show that a boson sampling device with
a modified input state can be used to generate molecular vibronic spectra, including complicated

effects such as Duschinsky rotations.

I. INTRODUCTION

Quantum mechanics allows the storage and manipula-
tion of information in ways that are not possible accord-
ing to classical phy: sics. At a gln.nce it appears evident
that the set of a com-
puter is strictly larger than the operations possible in a
classical hardware. This speculation is at the basis of
quantum speedups that have been achieved for oracu-
slems [1, 2]. Particularly significant
peed up achieved for the prime fac-
wmbers (3], a problem for which no
sorithm is currently known. Another
uantum computers is quantum sim-
it has recently been shown that the
al reactions [10] as well as molecular

[11] are attractive applications for
or all these instances, the realization
of a q would chall the Extended
Church-Turing thesis (ECT), which claims that a Tur-
ing machine can efficiently simulate any physically real-
izable system, and even disprove it if prime factorization
was finally demonstrated to be not efficiently solvable on
classical machines.

At the same time, the ruxllmlmn of a l'ull-scalu  quan-
tum p is a very di I chal-
lenge, even if it is not forbidden by fundamental physics.
This fact motivated the search for intermediate quantum
hardware that could efficiently solve specific computa-

tional problems, believed to be i ble with classical
machines, without being capable of universal quantum
Recently, A and Arkhipov found

that sampling the distribution of photons at the out-
put of a linear photonic network is expecbed (modulo a
few conjectures) to be ionall fficient for any

* Email: huh@fas.harvard.edu
 Email: aspuru@chemistry.harvard.edu

a b

output states wavenumber (cni')
—na)

seesee $83%%%

lar vibronic spectroscopy. a, Boson sampling consists of sam-
pling the output distribution of photons obtained from quan-
tum interference inside a linear quantum optical network.

Vibronic spectroscopy uses coherent light to electronically ex-
cite an ensemble of identical molecules and measures the re-
emitted (or scattered) radiation to infer the vibrational spec-
trum of the molecule. We show in this work how the funda-
mental physical process underlying b is formally equivalent to
situation a together with a non-linear state preparation step.

classical computer since it would require the estimation
of lots of matrix permanents [12]. On the contrary, this
task is naturally simulated by indistinguishable photons
injected as input of a photonic network (see the pictorial
description of boson sampling in Fig. 1a). While sev-
eral groups have already realized small-scale versions of
boson sampling [13-16], to challenge the ECT one also




another programmable GBS

(Gaussian Boson Sampling) in China.

solves graph problems.

comparison made with US DoE
Frontier supercomputer.

Solving Graph Problems Using Gaussian Boson Sampling
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transposition in MBQC

Z projective measurement isolates filaments of qubits
which are used to create quantum gates
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calculus

CNOT gate

classical quantum gates are realized with series of
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Y PsiQuantum

Cryoplant

A manufacturable platform for photonic guantum computing
by Koen Alexander et al, PsiQuantum, arXiv, April 2024.

requires 36 kW of cooling power at 4K
for 100 logical qubits
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Practical blueprint for low-depth photonic quantum computing with quantum dots

Ming Lai Chanf,> 2> * Aliki Anna Capatos,>* T Peter Lodahl,’? Anders Sgndberg Sgrensen,? and Stefano Paesani 4 ¥ Enangled

! Sparrow Quantum, Blegdamsvej 104A, DK-2100 Copenhagen @, Denmark photon Unitary gate i i
2 Center for Hybrid Quantum Networks (Hy-Q), The Niels Bohr Institute, sources | —_— ] [ b
Unaversity of Copenhagen, DK-2100 Copenhagen @, Denmark b 14 = _hﬂ y )
3 Quantum Engineering Centre for Doctoral Training, University of Bristol, Bristol, United Kingdom | f—i" ] EL
ANNF Quantum Computing Programme, Niels Bohr Institute, | {
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University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark 1y J f_;" S = = e H:r}.:::—;lﬂn
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Fusion-based quantum computing is an attractive model for fault-tolerant computation based L7 LAy
on photonics requiring only finite-sized entangled resource states followed by linear-optics opera-
tions and photon measurements. Large-scale implementations have so far been limited due to the
access only to probabilistic photon sources, vulnerability to photon loss, and the need for massive
multiplexing. Deterministic photon sources offer an alternative and resource-efficient route. By syn-
ergistically integrating deterministic photon emission, adaptive repeat-until-success fusions, and an
optimised architectural design, we propose a complete blueprint for a photonic quantum computer
using quantum dots and linear optics. It features time-bin qubit encoding, reconfigurable entangled-
photon sources, and a fusion-based architecture with low optical connectivity, significantly reducing
the required optical depth per photon and resource overheads. We present in detail the hardware
required for resource-state generation and fusion networking, experimental pulse sequences, and
exact resource estimates for preparing a logical qubit. We estimate that one logical clock cycle of
error correction can be executed within microseconds, which scales linearly with the code distance.
We also simulate error thresholds for fault-tolerance by accounting for a full catalogue of intrinsic
error sources found in real-world quantum dot devices. Our work establishes a practical blueprint
for a low-optical-depth, emitter-based fault-tolerant photonic quantum computer.
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Maximum tolerable

Required

Experimental error source Error model N experimental
threshold
benchmark
General loss Uncorrelated loss 8 8% [Fig. 8b(i)] n > 92%
Branching (finite cyclicity) Spin-photon X errors 6 0.174% [Fig. 8b(iii)] C > 574
Emitter-emitter distinguishability . . - . ce
(slow spectral diffusion) Distinguishability 8 4% [Fig. 8b(v)] Vigom > 96%
Single-emitter distinguishability (fast . . se
pure phonon dephasing) Photon Z errors 8 0.57% [Fig. 8b(vi)] Vizom > 99.4%
Optical excitation errors Distinguishability 8 4% [Fig. 8b(i)] Viiom > 96%
Laser-induced spin-flips during spin Loss & spin ) . 72
control depolarisation errors 7 0.6% [Fig. 8b(ii)] K <1.08 x 10
Finite T> (Markovian spin
depolarisation) Spin X/Z/Y errors 7 0.36% [Fig. 8b(iv)] T > 417 Trep
Markovian ground-state dephasing . . .. y
e —— Spin Z errors 10 0.6% [Fig. 8b(ii)] T5 > 56Tround
Blinking Correlated loss 8 6.1% [Fig. 8b(vii)] Pa/Pp > 154

Practical blueprint for low-depth photonic guantum computing with quantum dots by Ming Lai Chan,

Aliki Anna Capatos, Peter Lodahl, Anders Sgndberg Sgrensen, and Stefano Paesani, arXiv, July 2025.
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Minimizing resource overhead in fusion-based quantum computation . P g (CZ gate)
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(QUANDELA

Quandela blueprint for using quantum
dots are data qubit and their emitted
photons as ancilla qubits for creating
CNOT gates between the quantum dots

* quantum dots become data qubits.

e emitted photons are used to
entangle qubits and measure them.

* quantum dots magnetic control
creates single qubit gates.

A Spin-Optical Quantum Computing Architecture by
Grégoire de Gliniasty, Paul Hilaire, Pierre-Emmanuel
Emeriau, Stephen C. Wein, Alexia Salavrakos, Shane
Mansfield, Quantum Journal, July 2024.

Daphné Wang - Quandela
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/ by Stephanie Simmons, Photonic, October 2023 (16 pages).
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multiple QPUs interconnect options
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interconnect vendors
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QPU vs HPC power scale guesstimates
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