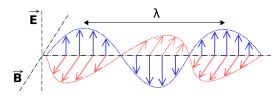


quantum computing with photons

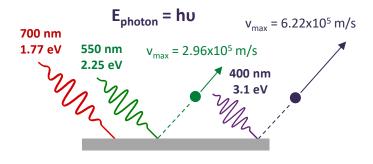
science, technology, industry

olivier ezratty

> Minalogic Quantum Day Lyon, November 18th, 2025


what is a photon?

$$\nabla \cdot \mathbf{D} = \rho$$


$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

EM "wave" - Maxwell - 1865

"particle" - Einstein - 1905

quantized electromagnetic field

quantum vacuum fluctuations

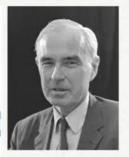
according to quantum field theory and Heisenberg indetermination principle, vacuum contains harmonic oscillators with zero-point energy:

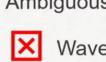
$$E = \frac{1}{2}hv \qquad \Delta E. \, \Delta t \ge \frac{\hbar}{2}$$

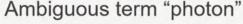
vacuum < 1µm

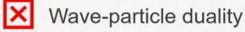
Lamb shift 1947 Casimir effect 1948-1997

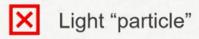
What is a photon?

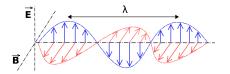

Anti-photon


W.E. Lamb, Jr.


Optical Sciences Center, University of Arizona, Tucson, AZ 85721, Received: 23 July 1994 / Accepted: 18 September 1994


Abstract. It should be apparent from the title of this article that the author does not like the use of the word "photon", which dates from 1926. In his view, there is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists and optical scientists. I admit that the word is short and convenient. Its use is also habit forming. Similarly, one might find it convenient to speak of the "aether" or "vacuum" to stand for empty space, even if no such thing existed. There are very good substitute words for "photon", (e.g., "radiation" or "light"), and for "photonics" (e.g., "optics" or "quantum optics"). Similar objections are possible to use of the word "phonon", which dates from 1932. Objects like electrons, neutrinos of finite rest mass, or helium atoms can, under suitable conditions, be considered to be particles, since their theories then have viable non-relativistic and non-quantum limits. This paper outlines the main features of the quantum theory of radiation and indicates how they can be used to treat problems in quantum optics.

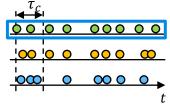

PACS: 12.20.-m; 42.50.-p


Discrete energy E=hf

Non-classical statistics

https://www.youtube.com/watch?v=xteugbb-bdU

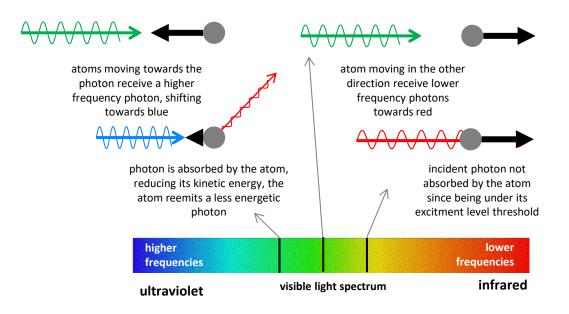
photon modes encode information


spatial mode where is the photon in space

spectral mode frequency or wavelength

orbital angular momentum twisted light modes with helical phase fronts

temporal mode when the photon was emitted

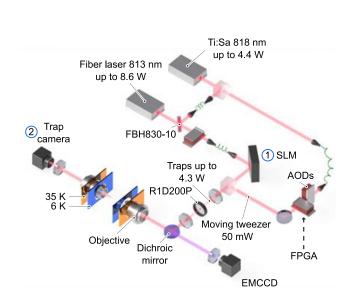

a mode describes one property of a photon

photons in quantum computing

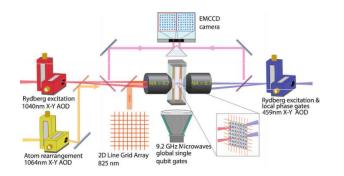
other signals

electrons controlled spin and microwave cavities photons atoms trapped ions cold atoms superconducting silicon topological photons vacancies single photon optical or electromagnetic microwave pulses initialization optical DC current sources and tweezers polarizers laser pulses interferometers, microwave pulses optical and/or microwaves polarizing beam quantum gates and/or DC current microwaves microwave RF signals splitters, ... reflectometry and quadrature analysis laser and CCD microwave reflectometry laser and CCD single photon readout detected fluorescence and quadrature analysis detected fluorescence detectors microwave photons optical photons Guillaume de Giovanni – Vigthor

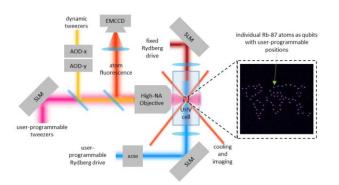
slowing down atoms

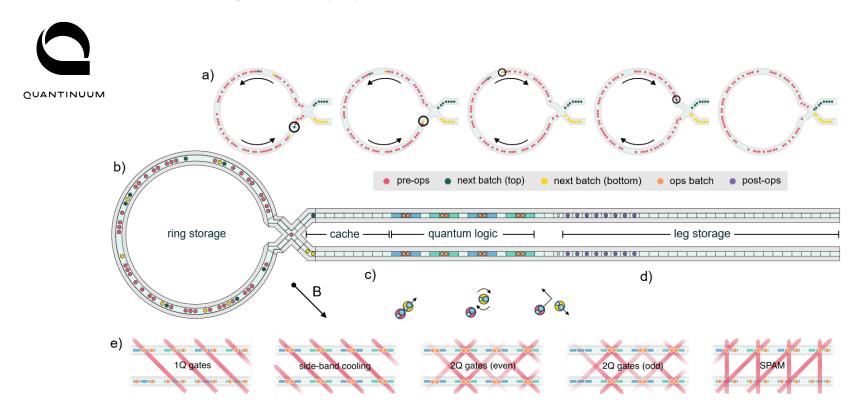


Magnetic (a) Field Anti-Helmholtz Coils (b) Energy Magnetic Field $m_I' = +1$ Laser $m_I' = -1$ I = 0 $m_I = 0$ Position

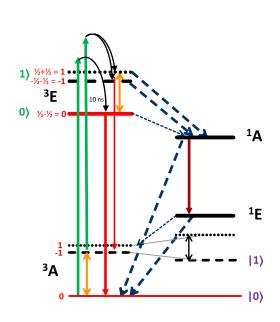

Doppler effect

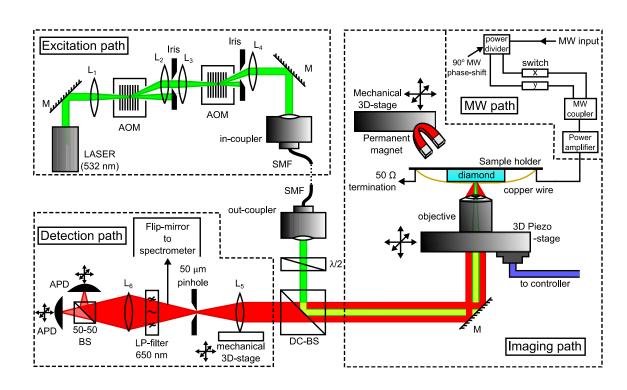
Magneto Optical Trap


controlling cold atoms with lasers "tweezers"



Tiphaine Delsalle – Menlo Systems


P. Laygues / Johan Boullet - Toptica


controlling trapped ions with lasers

Helios: A 98-qubit trapped-ion quantum computer by Anthony Ransford, M.S. Allman et al, arXiv, November 2025 (25 pages)

controlling NV centers with lasers

cc) Olivier Ezratty, 2025

quantum photonics enabling techs

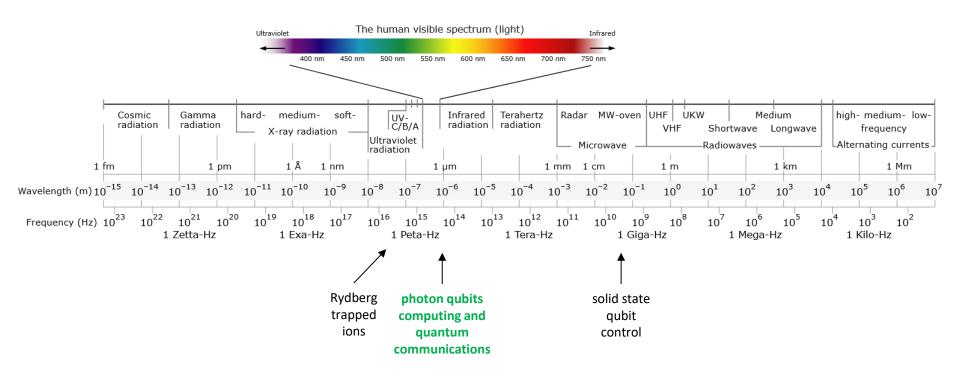
laser sources

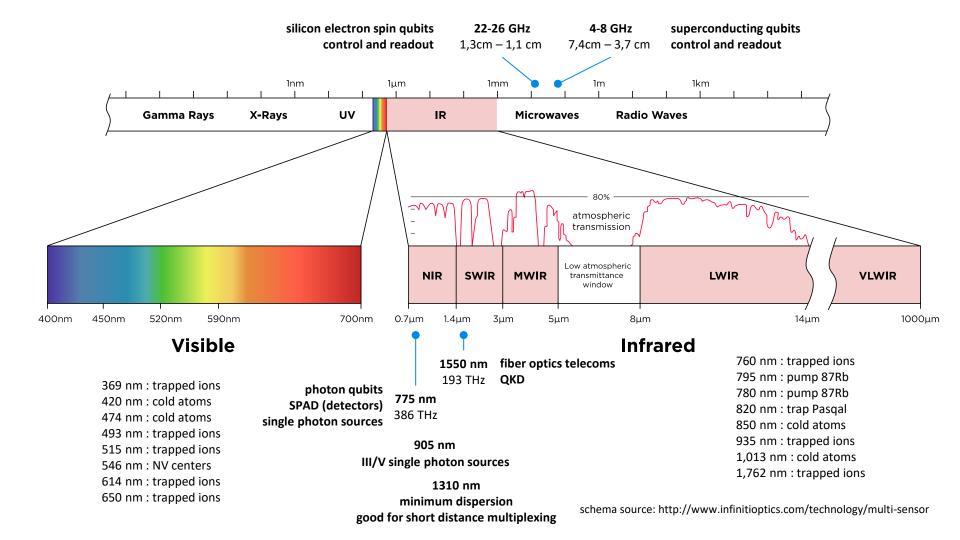
FREEDOM

photon sources and detectors

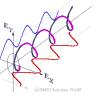
interconnect

other



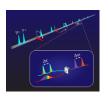


electromagnetic spectrum

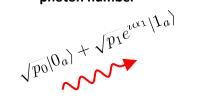

photons qubits types and tools

qubits

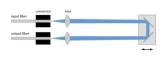
path

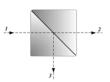

polarization

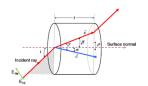

angular orbital moment


time

frequency


photon number

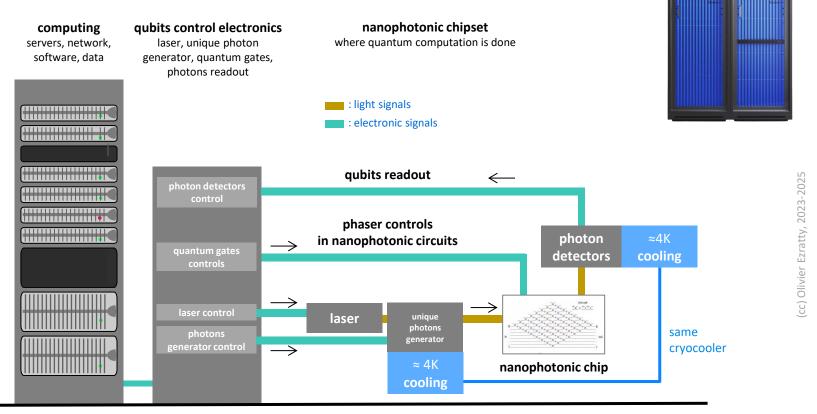

instrumentation


light guides
optical fibers of guides
integrated in
nanophotonic
components


optical delay line used to synchronize photons phase after going through various lengths fibers

splitters split a light beam in two identical beams

birefringent filters filters with two refracting index

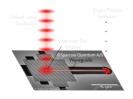

polarizers keep only one polarity

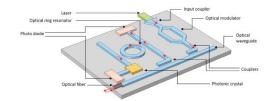
dephasers
modifies photons
(circular) polarity or
(linear) phase
delay lines of Pockels
celles

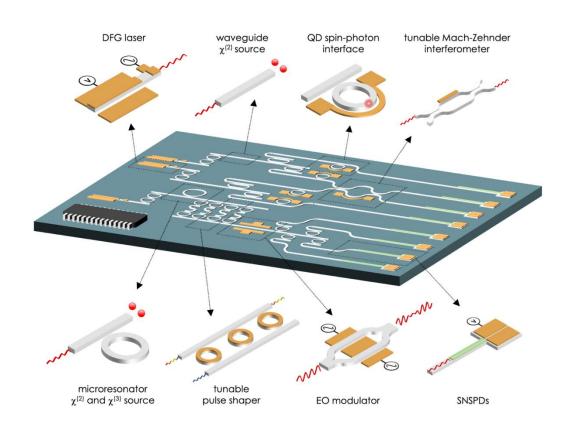
inside a photon qubit QPU

<10K

QUANDELA



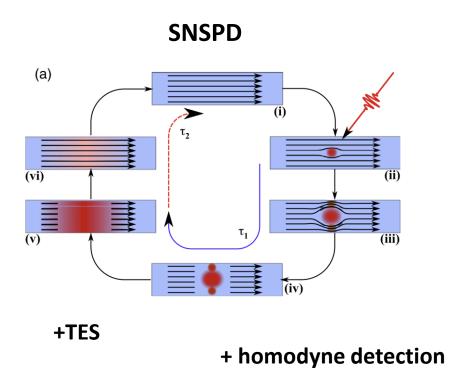




nanophotonic circuits

wafer substrates

silicon silicon on insulator (SOI) gallium nitride (GaN) gallium arsenide (GaAs) sapphire (Al₂O₃) silicon carbide (SiC) quartz (SiO₂)


added materials

lithium Niobate (LiNbO₃ on SiO₂) barium Titanate (BTO) on SOI hexagonal Boron Nitride (hBN) erbium-doped Silica (Er:SiO₂) InAs/GaAs and AlAs/GaAs Quantum Dots

Ségolène Olivier – CEA-Leti

Michael Geiselmann – Ligentec

single photon detectors

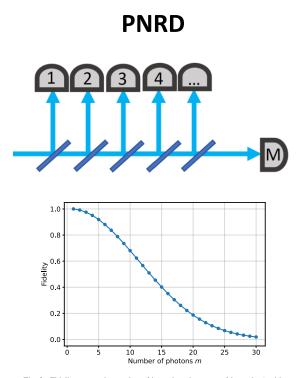


Fig. 2. Fidelity versus the number of incoming photons m (blue points) with N=120 single-photon detectors. This plot was obtained by a second order Stirling expansion of Eq. 6.

Andreas Fognini – Single Quantum

key figures of merit

photon sources

- \rightarrow purity $g^2(0)$
- indistinguishability (HOM)
- brightness
- clock rate
- timing jitter
- coupling
- tunability
- mode purity

photon detectors

- efficiency
- dark count rates
- timing jitter
- timing resolution
- dead time
- memory effect
- latency
- electronics jitter
- spectral response

fibers and waveguides

- total losses
- coupling efficiency (fiber to PIC)
- insertion loss
- attenuation
- chromatic dispersion
- noise

DV and **CV** photon qubits

discrete variables

discrete degree of freedom of a photon

Fock states: $|0\rangle$, $|1\rangle$, $|2\rangle$... single or many photon properties

single indistinguishable photon sources

density matrix

KLM model, MZI (Mach-Zehnder Interferometer) gates, measurement based

photon counters /detectors APD, SNSPD, VLPC, TES

PsiQuantum

QUANT\/M PHOTONICS

ORCA

continous variables

quadrature of a light field

coherent states, gumodes, spectral and time modes

> entangled photons sources squeezed states, ...

> > Wigner function

determinist gates

modes measurement gaussian and non gaussian gates

> homodyne and heterodyne detectors

boson sampling

multimode photons

unique photons source

permanent

MZI and interferometer

single photons detectors

quantum information

photon sources

representation

gates

photon detectors

players

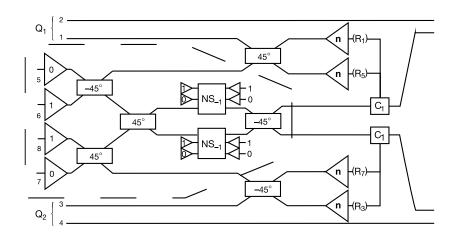
the KLM model

QUANDELA

Daphné Wang - Quandela

nature

Explore content × About the journal × Publish with us × Subscribe


nature > articles > article

Article | Published: 04 January 2001

A scheme for efficient quantum computation with linear optics

E. Knill ☑, R. Laflamme & G. J. Milburn

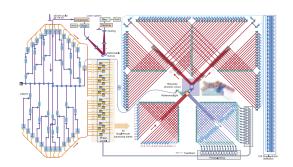
Nature 409, 46–52 (2001) Cite this article

boson sampling

The computational complexity of linear optics

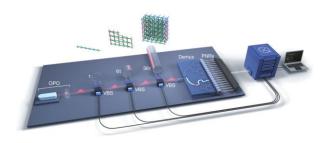
Authors:

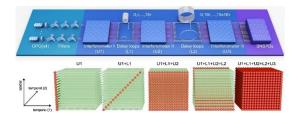
Scott Aaronson,


Alex Arkhipov

Authors Info & Claims

STOC '11: Proceedings of the forty-third annual ACM symposium on Theory of computing https://doi.org/10.1145/1993636.1993682


Published: 06 June 2011 Publication History


Quantum computational advantage using photons by Han-Sen Zhong, Jian-Wei Pan et al, arXiv, December 2020.

100 photon modes and detectors

Quantum computational advantage with a programmable photonic processor by lars S Madsen et al, Nature, June 2022.

216 squeezed photon modes still a sampling task, not a real computational task

Robust quantum computational advantage with programmable 3050-photon Gaussian boson sampling by Hua-Liang Liu, Jian-Wei Pan et al, arXiv, August 2025.

8,176 modes photon and 16 detectors

Using Gaussian Boson Sampling to Find Dense Subgraphs

Juan Miguel Arrazola* and Thomas R. Bromlev[†] Xanadu, 372 Richmond Street W. Toronto, Ontario M5V 1X6. Canada

Boson sampling devices are a prime candidate for exhibiting quantum supremacy, yet their application for solving problems of practical interest is less well understood. Here we show that Gaussian boson samplin densest k-sub th GBS, which dense subgraphs search selects dense s graph density and the numb determining someone programme of the continuous of the continuous

sions of the random search and simulated annealing algorithms and apply them through numerical simulations of GBS to identify the densest subgraph of a 30 vertex graph.

Quantum algorithms are often designed with the assumption that they can access the full power of universal quantum computation. However, presently developing quantum devices have limited resource capabilities and are not fault-tolerant. Their emergence has motivated a reexamination of methods for designing quantum algorithms, with the focus now on harnessing the computational power of small-scale, noisy quantum computers. Candidate algorithms for near-term devices include quantum simulators for many-body physics [1, 2], variational algorithms [3-6], quantum approximate optimization algorithms [7, 8], and machine learning on hybrid

Boson sampling is a limited model of quantum computation given by passing photons through a linear interferometer and observing their output configurations [14]. Significant efforts have been performed to implement boson sampling [15-18], leading to the proposal of related models such as scattershot boson sampling [19-21] and Gaussian boson sampling [22, 23] that are more suitable for experimental realizations. Moreover, boson sampling devices are in principle capable of performing tasks that cannot be efficiently simulated on classical computers, a feature that has made them a leading candidate for challenging the extended Church-Turing thesis. In fact, the primary objective of implementing boson sampling has so far been to demonstrate quantum supremacy, leaving the real-world application of such devices underdeveloped. A notable exception is the use of Gaussian boson sampling for efficiently calculating the vibronic spectra of molecules, [24-26], which provided the first clue of the usefulness of this platform.

In this work, we show that Gaussian boson sampling (GBS) can be used to enhance classical stochastic algorithms for the densest k-subgraph (DkS) problem. The DkS problem is NP-Hard [27] and defined through the following optimization task: given a graph G with n vertices, find the subgraph of k < n vertices with the largest density. Among subgraphs with a fixed number of vertices, the density and the number of edges are equivalent quantities, and we hence refer to both interchangeably throughout this manuscript. Beyond its fundamental in-

terest in mathematics and theoretical computer science, the DkS problem has a natural connection to clustering problems with the goal of finding highly correlated subsets of data. Clustering has applications in a wide range of fields such as data mining [28-31], bioinformatics [32, 33], and finance [34].

Our approach uses a technique from Ref. [35] to encode a graph into the GBS paradigm. Here, the probability of observing a given photon configuration is proportional to the number of perfect matchings of the corresponding subgraph. We highlight a correspondence between the number of perfect matchings in a subgraph and its density, meaning that a suitably programmed GBS device

will prefer to output dense subgrap lowing results in a companion paper is a form of proportional sampling enhance the stochastic element of heuristics for the DkS problem. time approximation schemes are be DkS problem [37], certain worst-c ing superpolynomial runtime may

stochastic algorithms. Our finding, a fixed graph, where we introduce GBS-enhanced hybridizations of random search and simulated annealing algorithms. This approach highlights a general principle of using output samples from a GBS device to enhance approximate solutions to optimization problems.

Applying GBS to the DkS problem. - The important concepts of GBS are first briefly reviewed. In GBS, photon-number detection is performed on a multi-mode Gaussian state [22, 23, 38]. For an n-mode system, we denote the possible outputs of GBS by vectors S = (s_1, s_2, \ldots, s_n) , where s_i is the number of photons detected in output mode i. It was shown in Ref. [22] that the probability of observing an output pattern S is

$$P(S) = |\sigma_Q|^{-\frac{1}{2}} \frac{\text{Haf}(A_S)}{s_1! s_2! \cdots s_n!},$$
 (1)

where $\sigma_O = \sigma + \mathbb{1}_{2n}/2$, σ is the $(2n \times 2n)$ -dimensional covariance matrix of the n-mode Gaussian state, and A_S is a submatrix of $A = \begin{pmatrix} 0 & \mathbb{1}_n \\ \mathbb{1}_n & 0 \end{pmatrix} \begin{bmatrix} \mathbb{1}_{2n} - \sigma_Q^{-1} \end{bmatrix}$ fixed by

Boson Sampling for Molecular Vibronic Spectra

Joonsuk Huh,* Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean, and Alán Aspuru-Guzik† Department of Chemistry and Chemical Biology. Harvard University, Cambridge, Massachusetts 02138, United States (Dated: December 30, 2014)

Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a fullscale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, box classical com tup. Therefore, boson sampli Church-Turing

molecular simulation thesis and thi

in relation to ful development of a boson sampling apparatus would not only answer such inquiries, but also yield a practical tool for difficult molecular computations. Specifically, we show that a boson sampling device with a modified input state can be used to generate molecular vibronic spectra, including complicated effects such as Duschinsky rotations.

I. INTRODUCTION

2014

Dec

ant-ph]

useful algorithms based

on parameterized gaussian


boson sampling

Quantum mechanics allows the storage and manipulation of information in ways that are not possible according to classical physics. At a glance, it appears evident that the set of operations characterizing a quantum computer is strictly larger than the operations possible in a classical hardware. This speculation is at the basis of quantum speedups that have been achieved for oracu-

dems [1, 2]. Particularly significant peed up achieved for the prime facnumbers [3], a problem for which no orithm is currently known. Another quantum computers is quantum simit has recently been shown that the al reactions [10] as well as molecular [11] are attractive applications for or all these instances, the realization

of a quantum computer would challenge the Extended Church-Turing thesis (ECT), which claims that a Turing machine can efficiently simulate any physically realizable system, and even disprove it if prime factorization was finally demonstrated to be not efficiently solvable on classical machines.

At the same time, the realization of a full-scale quantum computer is a very demanding technological challenge, even if it is not forbidden by fundamental physics. This fact motivated the search for intermediate quantum hardware that could efficiently solve specific computational problems, believed to be intractable with classical machines, without being capable of universal quantum computation. Recently, Aaronson and Arkhipov found that sampling the distribution of photons at the output of a linear photonic network is expected (modulo a few conjectures) to be computationally inefficient for any

impling, at least

FIG. 1. Pictorial description of boson sampling and molecular vibronic spectroscopy. a, Boson sampling consists of sampling the output distribution of photons obtained from quantum interference inside a linear quantum optical network. b. Vibronic spectroscopy uses coherent light to electronically excite an ensemble of identical molecules and measures the reemitted (or scattered) radiation to infer the vibrational spectrum of the molecule. We show in this work how the fundamental physical process underlying b is formally equivalent to situation a together with a non-linear state preparation step.

classical computer since it would require the estimation of lots of matrix permanents [12]. On the contrary, this task is naturally simulated by indistinguishable photons injected as input of a photonic network (see the pictorial description of boson sampling in Fig. 1a). While several groups have already realized small-scale versions of boson sampling [13-16], to challenge the ECT one also

^{*} Email: huh@fas.harvard.edu

[†] Email: aspuru@chemistrv.harvard.edu

another programmable GBS (Gaussian Boson Sampling) in China. solves graph problems. comparison made with US DoE Frontier supercomputer.

Solving Graph Problems Using Gaussian Boson Sampling

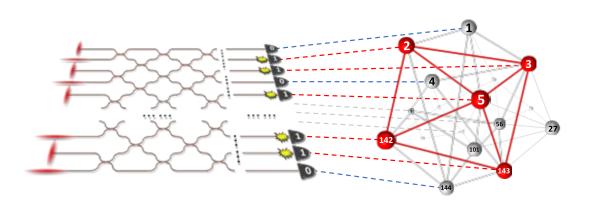
Yu-Hao Deng,^{1,2,*} Si-Qiu Gong,^{1,2,*} Yi-Chao Gu,^{1,2,*} Zhi-Jiong Zhang,^{1,2} Hua-Liang Liu,^{1,2} Hao Su,^{1,2} Hao-Yang Tang,^{1,2} Jia-Min Xu,^{1,2} Meng-Hao Jia,^{1,2} Ming-Cheng Chen,^{1,2} Han-Sen Zhong,^{1,2} Hui Wang,^{1,2} Jiarong Yan,^{1,2} Yi Hu,^{1,2} Jia Huang,³ Wei-Jun Zhang,³ Hao Li,³ Xiao Jiang,^{1,2} Lixing You,³ Zhen Wang,³ Li Li,^{1,2} Nai-Le Liu,^{1,2} Chao-Yang Lu,^{1,2} and Jian-Wei Pan^{1,2}

¹Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,

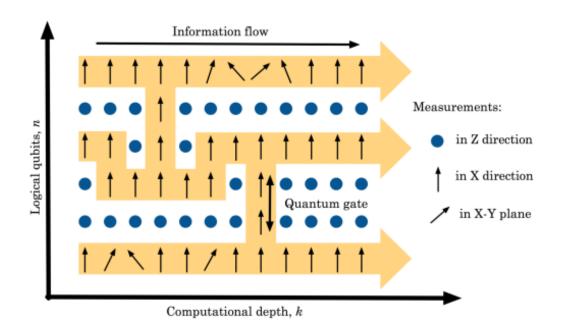
University of Science and Technology of China, Hefei, Anhui, 230026, China

²CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics,

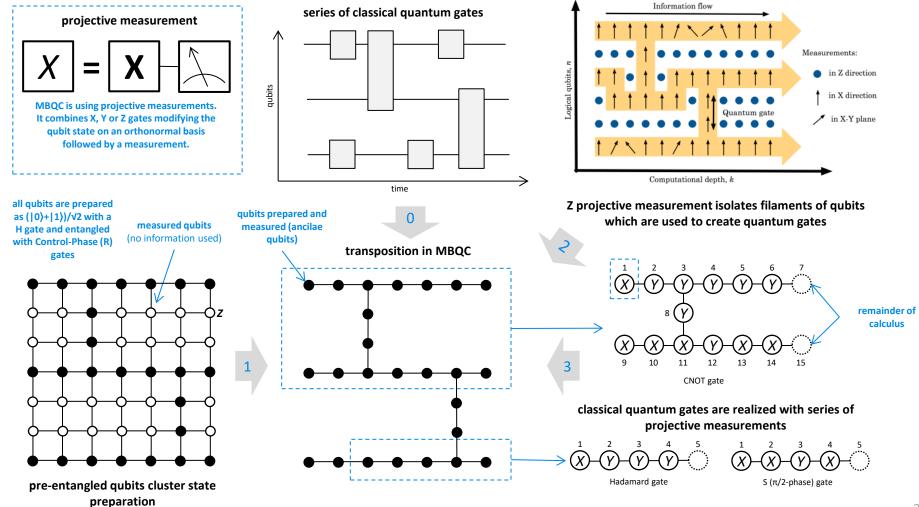
University of Science and Technology of China, Shanghai, 201315, China

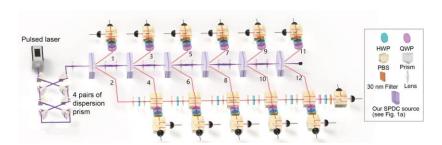

³State Key Laboratory of Functional Materials for Informatics,

Shanghai Institute of Micro system and Information Technology (SIMIT),

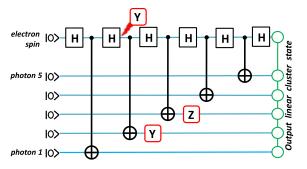

Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China

(Dated: February 3, 2023)

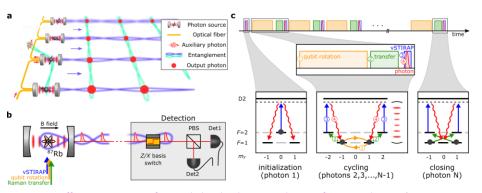

https://arxiv.org/abs/2302.00936 February 2023


the measurement based model

<u>Measurement-based quantum computation</u> by H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Nature Physics, January 2009.



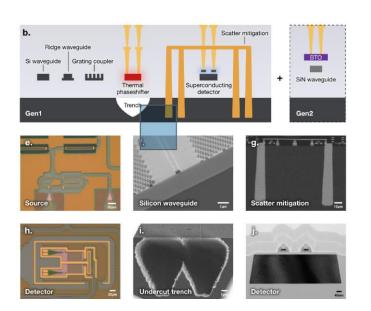
cluster states generation

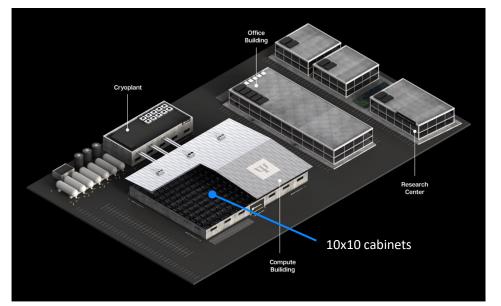


12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion by

Han-Sen Zhong, Jian-Wei Pan et al, PRL, 2018

<u>Proposal for Pulsed On-Demand Sources of Photonic Cluster State</u> <u>Strings</u> by Netanel H. Lindner and Terry Rudolph, PRL, 2009.




Efficient generation of entangled multi-photon graph states from a single atom by Philip Thomas, Leonardo Ruscio, Olivier Morin and Gerhard Rempe, MPI, May 2022

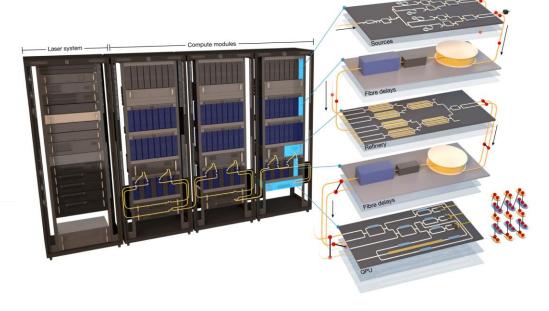
Ψ PsiQuantum

A manufacturable platform for photonic quantum computing by Koen Alexander et al, PsiQuantum, arXiv, April 2024.

requires 36 kW of cooling power at 4K for 100 logical qubits

nature

Explore content > About the journal > Publish with us >


nature > articles > article

Article Open access | Published: 22 January 2025

Scaling and networking a modular photonic quantum computer

H. Aghaee Rad, T. Ainsworth, R. N. Alexander A. B. Altieri, M. F. Askarani, R. Baby, L. Banchi, B. Q. Baragiola, J. E. Bourassa, R. S. Chadwick, I. Charania, H. Chen, M. J. Collins, P. Contu, N. D'Arcy, G. Dauphinais, R. De Prins, D. Deschenes, I. Di Luch, S. Duque, P. Edke, S. E. Fayer, S. Ferracin, H. Ferretti, ... Y. Zhang

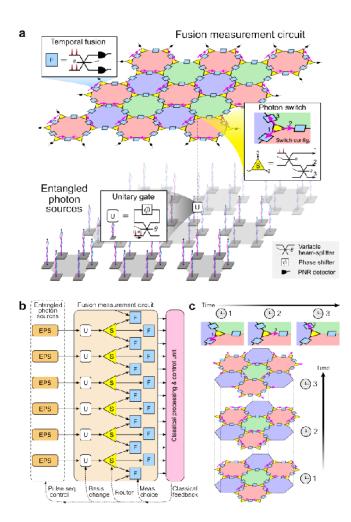
Nature 638, 912–919 (2025) Cite this article

Aurora QPU

distributed QPU with photonic interconnect GKP qumodes qubits significant overhead

Practical blueprint for low-depth photonic quantum computing with quantum dots

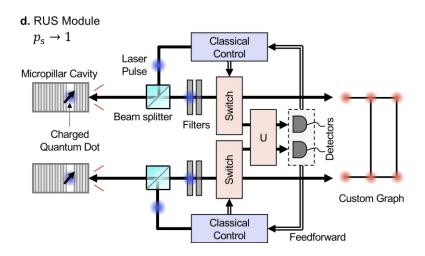
 $\label{eq:mingLaiChan} \mbox{Ming Lai Chan}^{\dagger,1,2,*} \mbox{ Aliki Anna Capatos,}^{3,4,\dagger} \mbox{ Peter Lodahl,}^{1,2} \mbox{ Anders Søndberg Sørensen,}^2 \mbox{ and Stefano Paesani}^{2,4,\ddagger} \mbox{ Peter Lodahl,}^{1,2,*} \mbox{ Anders Søndberg Sørensen,}^2 \mbox{ and Stefano Paesani}^{2,4,\ddagger} \mbox{ Peter Lodahl,}^{1,2,*} \mbox{ Anders Søndberg Sørensen,}^2 \mbox{ and Stefano Paesani}^{2,4,\ddagger} \mbox{ Peter Lodahl,}^{2,4,\ddagger} \mbox{ Peter Lodahl,}^{2,4,\ddagger}$

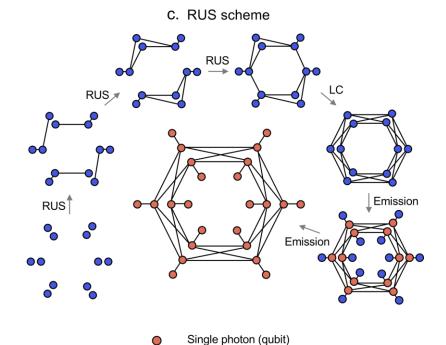

¹Sparrow Quantum, Blegdamsvej 104A, DK-2100 Copenhagen Ø, Denmark

² Center for Hybrid Quantum Networks (Hy-Q), The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø. Denmark

³ Quantum Engineering Centre for Doctoral Training, University of Bristol, Bristol, United Kingdom
⁴NNF Quantum Computing Programme, Niels Bohr Institute,

University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark (Dated: July 23, 2025)


Fusion-based quantum computing is an attractive model for fault-tolerant computation based on photonics requiring only finite-sized entangled resource states followed by linear-optics operations and photon measurements. Large-scale implementations have so far been limited due to the access only to probabilistic photon sources, vulnerability to photon loss, and the need for massive multiplexing. Deterministic photon sources offer an alternative and resource-efficient route. By synergistically integrating deterministic photon emission, adaptive repeat-until-success fusions, and an optimised architectural design, we propose a complete blueprint for a photonic quantum computer using quantum dots and linear optics. It features time-bin qubit encoding, reconfigurable entangledphoton sources, and a fusion-based architecture with low optical connectivity, significantly reducing the required optical depth per photon and resource overheads. We present in detail the hardware required for resource-state generation and fusion networking, experimental pulse sequences, and exact resource estimates for preparing a logical qubit. We estimate that one logical clock cycle of error correction can be executed within microseconds, which scales linearly with the code distance. We also simulate error thresholds for fault-tolerance by accounting for a full catalogue of intrinsic error sources found in real-world quantum dot devices. Our work establishes a practical blueprint for a low-optical-depth, emitter-based fault-tolerant photonic quantum computer.


Experimental error source	Error model	N	Maximum tolerable threshold	Required experimental benchmark
General loss	Uncorrelated loss	8	8% [Fig. 8b(i)]	$\eta > 92\%$
Branching (finite cyclicity)	Spin-photon X errors	6	0.174% [Fig. 8b(iii)]	C > 574
Emitter-emitter distinguishability (slow spectral diffusion)	Distinguishability	8	4% [Fig. 8b(v)]	$V_{\mathrm{HOM}}^{ee} > 96\%$
Single-emitter distinguishability (fast pure phonon dephasing)	Photon Z errors	8	0.57% [Fig. 8b(vi)]	$V_{\mathrm{HOM}}^{se} > 99.4\%$
Optical excitation errors	Distinguishability	8	4% [Fig. 8b(i)]	$V_{\mathrm{HOM}}^{ee} > 96\%$
Laser-induced spin-flips during spin control	Loss & spin depolarisation errors	7	0.6% [Fig. 8b(ii)]	$\bar{\kappa} < 1.08 \times 10^{-2}$
Finite T_2 (Markovian spin depolarisation)	Spin $X/Z/Y$ errors	7	0.36% [Fig. 8b(iv)]	$T_2 > 417 au_{ m rep}$
Markovian ground-state dephasing (Overhauser noise)	Spin Z errors	10	0.6% [Fig. 8b(ii)]	$T_2^* > 56\tau_{\rm round}$
Blinking	Correlated loss	8	6.1% [Fig. 8b(vii)]	$P_A/P_D > 15.4$

<u>Practical blueprint for low-depth photonic quantum computing with quantum dots</u> by Ming Lai Chan, Aliki Anna Capatos, Peter Lodahl, Anders Søndberg Sørensen, and Stefano Paesani, arXiv, July 2025.

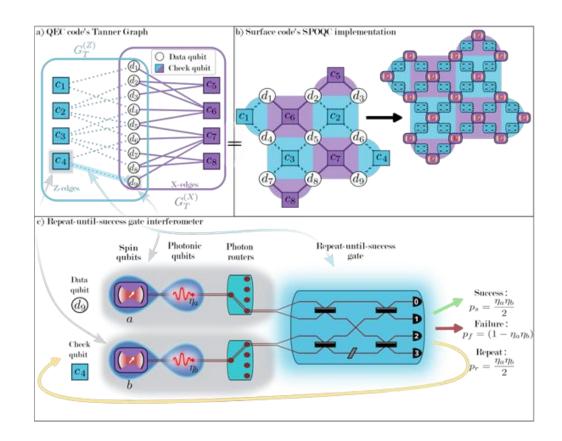
QUANDELA

Minimizing resource overhead in fusion-based quantum computation using hybrid spin-photon devices by Stephen C. Wein, Timothée Goubault de Brugière, Luka Music, Pascale Senellart, Boris Bourdoncle, and Shane Mansfield, arXiv, December 2024 (22 pages).

Quantum dot (qubit)
Graph edge (CZ gate)

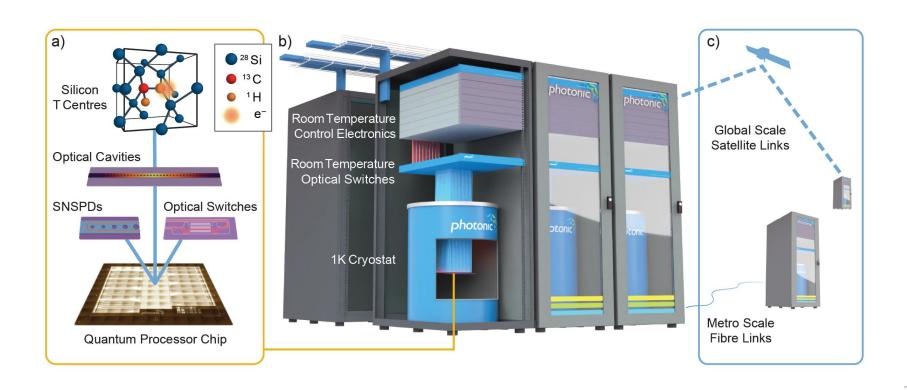
Type I fusion gate

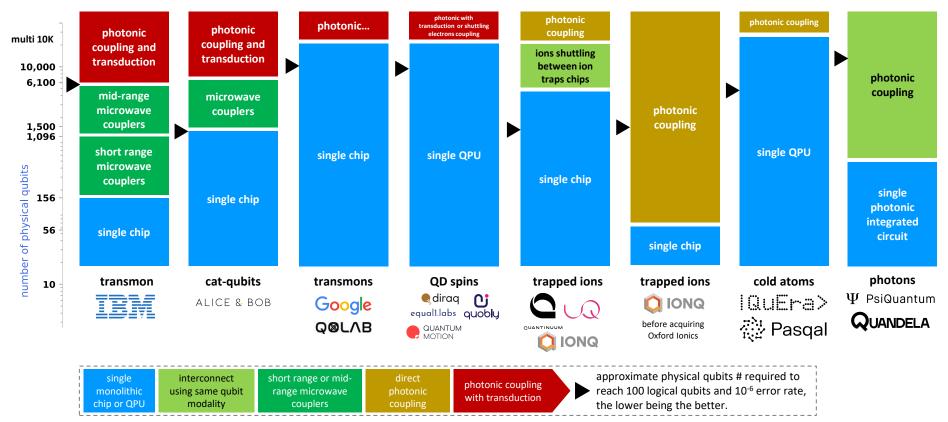
Type II fusion gate


Y Measurement

Quandela blueprint for using quantum dots are data qubit and their emitted photons as ancilla qubits for creating CNOT gates between the quantum dots

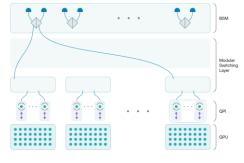
- quantum dots become data qubits.
- emitted photons are used to entangle qubits and measure them.
- quantum dots magnetic control creates single qubit gates.

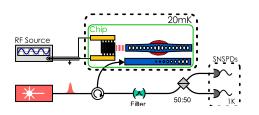

A Spin-Optical Quantum Computing Architecture by Grégoire de Gliniasty, Paul Hilaire, Pierre-Emmanuel Emeriau, Stephen C. Wein, Alexia Salavrakos, Shane Mansfield, Quantum Journal, July 2024.

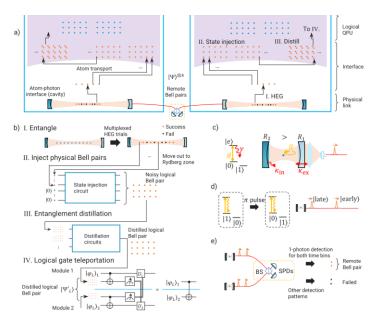


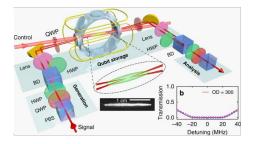
<u>Scalable Fault-Tolerant Quantum Technologies with Silicon Colour Centres</u>

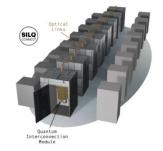
by Stephanie Simmons, Photonic, October 2023 (16 pages).


multiple QPUs interconnect options

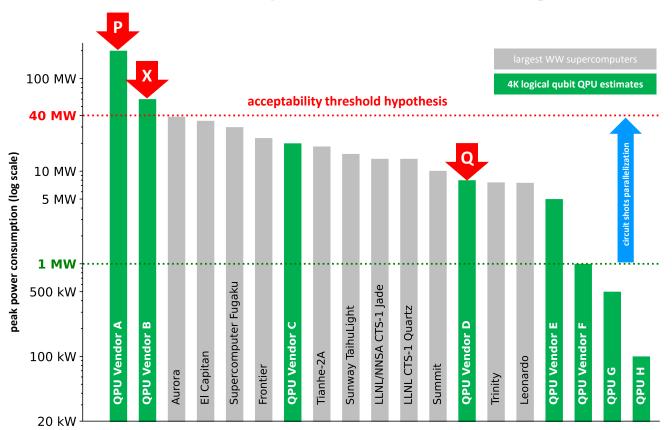

growing complexity with rough estimates thresholds requiring these techniques


QPU interconnect vendors


Eleni Diamanti – LIP6 and Weling


 $\mathcal{N}\mathcal{U}$

<u>w</u>elinq



QPU vs HPC power scale guesstimates

IEEE P3329 Quantum Energy Initiative (QEI) Working Group

(cc) Olivier Ezratty, November 2025.

get the slides