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the second quantum revolution

superposition
linked to wave-particle

duality and linearity of
Schrédinger’s equation

entanglement

state correlation of
distant quantum objects,
but random and after
measurement

individual control of
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quantum computing
guantum telecommunications
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quantum sensing



sciences used with guantum technologies
% physics Tc mathematics \ivr human sciences

electromagnetism linear algebra philosophy
guantum physics groups theory epistemology
guantum matter analysis sociology
thermodynamics complexity theories technology ethics
fluids mechanics economics of innovation
photonics #vv. computer science R&D policy making
LEW £
"= information theory geopolitics
@ engineering algorithms design startups ecosystem
materials design programming
electronics engineering classical computing
cryogenics telecommunications

machine learning
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typical difficult problems
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solving Schrodinger’s wave equation

to simulate quantum matter
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guantum computing usage categories
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QPUs vendors per qubit type
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all qubit types have their challenges

quantum annealing

+ mature development tools offering

large number of software startups,
particularly in Japan and Canada.

quantum annealers are available in the cloud

by D-Wave and Amazon Web Services.

the greatest number of well documented case
studies in many industries although still at the
proof of concept stage.

most universal qubits gates algorithms can be
have an equivalent on quantum annealing.

qubits NV centers

works at 4K, with simple cryogeny without dilution
and helium 3.

can also potentially work at ambiant temperature,
with some limitations on entanglement.

long coherence time > 1 ms.
strong and stable diamond structure.

can also help create quantum memory for other
qubits types, like superconducting qubits.
possible to integrate it with optical quantum
telecommunications.

all algorithms are hybrid, requiring some
preparation on classical computers.

only one operational commercial vendor,
D-Wave.

computing high error rate.

most commercial applications are still at the
pilot stage and not production-grade scale,
but they are closer than gate-based use cases.
no generic operational proof of quantum
advantage.

room~temperature operations need
some fact-check.
not demonstrated at scale so far.
qubits controls complexity with lasers
and microwaves => not easy to scale.
NV centers applications are more
centered on quantum magnetometry
and sensing than computing.
h-complexity of NV centers circuits
manufacturing.

Majorana fermions

theorically very stable qubits with low
level of required error correction.

long coherence time and gates speed

enabling processing complex and deep
algorithms.

potential qubits scalability, built with
technologies close to electron spin qubits.

some researches in the topological matter
field could be fruitful with no Majorana
fermions.

key technology in public research and with
commercial vendors (IBM, Google, Rigetti,
Intel, Amazon, 0QC, IQM, etc).

record of 433 programmable qubits with IBM.

constant progress in noise reduction,
particularly with the cat-qubits variation which
could enable a record low ratio of
physical/logical qubits.

many existing enabling technologies:

cryostats, cabling, amplifiers, logic, sensor

potentially scalable technology and
deployable in 2D geometries.

identical ions => no calibration required like with

superconducting/electron spin qubits.

good qubits stability.

excellent qubit gate fidelities and high ratio between
coherence time and gate time => supports deep algorihms

in number of gate cycles.

entanglement possible between all qubits on 1D
architecture which speeds up computing, avoiding SWAP

gates.

requires some cryogeny at 4K to 10K => simpler.

easy to entangle ions with photons for long distance

communications.

topological qubits programming is different and
requires an additional software layer.

rather few laboratories involved in this path.

no startup was launched in thi d. Microsoft
is the only potential vendor. IBM is investigating
the field in Zurich.

works at low cryogenic temperatures like
superconducting qubits < 20mK.

no Majorana fermion qubit demonstrated yet.

superconducting qubits

qubit coherence time usually < 300 ps.
cryogeny constrained technology at <15 mK.
heterogeneous qubits requiring calibration
and complex micro-wave frequency maps.
qubit coupling limited to neighbor qubits in 2D
structures (as compared with trapped ions).
cabling complexity and many passive and
active electronic components to control qul
with micro-waves.

qubits size and uneasy miniaturization.

qubit fidelities are average with most vendors.

* unproven scalability options
beyond 50 qubits (ions
shuttling, 2D architectures,
photon interconnect, micro-
Penning traps).

* two-qubit gate times
increasing with ion distance

in 1D and 2D settings.

relatively slow computing
due to long quantum gate

imes which may be
problematic for deep
algorithms.

photons qubits

stable qubits with absence of
decoherence.

qubits processing at ambiant temperature.

emerging nano-photonic manufacturing
techniques enabling scalability.

easier to scale-out with inter-qubits
communications and quantum
telecommunications.

MBQC/FBQC circumventing the fixed gates
depth computing capacity.

silicon spin qubits

good scalability potential to reach millions of
qubits, thanks to their size of 100x100 nm.

works at around 100 mK - 1K => larger cooling
budget for control electronics vs
superconducting qubits.

relatively good qubits fidelity reaching 99.6%
for two qubits gates in labs for a small number
of qubits

adapted to 2D architectures usable with
surface codes or color codes QEC.

can leverage existing semiconductor fabs.

good quantum gates speed

neutral atoms qubits

long qubit coherence time and fast gates.
operational systems with 100-300 atoms.

identical atoms, that are controlled with the
same laser and micro-wave frequencies (but

dual-elements architectures are investigated).

works in both simulation and gate-based
paradigms.

no need for specific integrated circuits.
uses standard apparatus.

low energy consumption.

need to cool photon sources and detectors, but
at relatively reasonable temperatures between
2K and 10K, requiring lighweight cryogenic
systems.

boson sampling based quantum advantage
starts to being programmable but a practival
quantum advantage remains to be proven.

not yet scalable in number of operations due to
probabilistic character of quantum gates and the
efficiency of photon sources in most paradigms.

active research in the field started later than
‘with other qubit technologies and spread
over several technologies (full Si, SiGe, atom
spin donors).

less funded startup scene.
qubits variability to confirm.

high fabs costs and long test cycles (18
months average).

so far, only 4 to 15 entangled qubits
(QuTech, UNSW, Princeton, University of
Tokyo).

scalability remains to be demonstrated.

adapted to quantum simulations more
than to universal gates compu

crosstalk between qubits that can be
mitigated with two-elements atom
architectures.

not yet operational QND (quantum non
demolition) measurement that is required
for QEC and FTQC.

slow operations (1 Hz simulation cycle).
hard to implement with gate-based model.

losing atoms during computing.




key QPU challenges
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useful NISQ*
requirements

with quantum
error mitigation

state of the art

easy to emulate classically,
too noisy to be useful

first 99.9% fidelities _

April 16th, 2024

* NISQ = noisy intermediate
scale quantum computers.
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ow to improve qubit fidelities? *
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Kentaro Heya'*" and Naoki Kanazawa' "
'1BM Quantum, IBM Research Tokye, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokvo 103-8510, Japan

* Research Center Jor Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokve
153-8904, Japan

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

Yosep Kim,':* Alexis Morvan,' Long B. Nguyen,' Ravi K. Naik,"? Christian Jiinger,'
Larry Chen,? John Mark Kreikebaum,>* David I. Santiago,":? and Irfan Siddiqi"-*?*
! Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Department of Physics, University of California, Berkeley, California 94720, USA
3Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Dated: December 21 2022)

tune qubit parameters use different primary gates improve control signals quality

* using here the example of superconducting qubits



some software challenges

. § 8
state preparation unitary transformations. ) 10 100MHz
A classical A
” oracle " ® computer » ® 1MHz
uniform . based unction £, £, 107 10KH.
. - 5 3 Iz
superposition algorithims able 3t 2t
S what the 8 106
r quantum ===-y  quantum .
g basis rithmetic computer | computing >100 what the
§ encoding | e | || ntEn) e 7 theoretician years user sees 105 .
g o
g mplitude g .
g angle :""‘:’“'e mplification problem size very largé problem T 1041 Lyear ®
g " ase -
encoding algorithms A A .
quantum memory phase w ® 3 ° 1 month
shiftand = S0 what classical 1075 e Lmonth
amplitude Kickback BE g computing
feneasing § s ¢ technologists 02
Incompute are doing. 1
rick what quantum A s lday o
fewer computing b 10t
~ -~ technologists
encodin years Poogsts
" are trying to do ; 102 103 104 105 105 107 108  10°
problem size larger problem size Number of plane waves, N

data loading

actual speedups actual computing time

Researching & Developing the Computers of Tomorrow Requires Powerful Simulations Today

data structures

1000000
A THALES BACQ higher-level ]
100000 EVIDEN ¢score algorithms « no-code » user data a‘;?!)lication specific environments
s ! U bvthon + aops frameworks ;
: h‘ : < Python frameworks objects  qubit i Python +apps frameworks !
10000 ‘ 1Y /I— OED g low-level
= = TU Delft: QPack 2 algorithms — energetics Java, PHP, ... objects  qubit
£ 4 ; i
& 1000 n: i Q ; : : :
® C++ objects bit : |
§  |STATEVECTOR CLOPS = speed #,, J a : i
a Y arrays . H m H
0¢ | gate-code (before transpiling) |
100 andomised ?o.J @IEEE C language strings qubit 3 :
. > qubit fidelities . Rayth assembl byte ubit i gate-code (after transpiling) |
~ L= _w benchmarking Q2 I Tohnologies v v q s ;
e e I
I - L NETWOR!( ! . @ machine language bit pulse control electronics instructions
A 2 T qubits number
1 2 4 B 16 32 64 128 256 512 1024 2048 409 B192 1638432768

#of qubits

tensor networks competition

benchmarking

coding abstraction level

same abstration level with qubit gates



simulate matter for...
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guantum digital
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better batteries
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battery simulation
lithium-oxygen
source: IBM

Mercedes-Benz

battery simulation
estimating the cost of electrolyte

simulation on PsiQuantum’s future QPU.

source: PsiQuantum, Mercedes-Benz

@& HYUNDAI

battery simulation

model lithium oxide to understand how
batteries age over time

source: Hyundai, lonQ

DAIMLER

battery simulation
lithium-sulfur battery design
source: IBM

battery simulation

simulating magnetism and spins
source: Samsung, Honeywell

.

TotalEnergies
battery materials design

simulating Mott insulator transitions in battery
electrode materials and ceramic superconductors
and discharge curve of Li,CoO,.

source: Total, Pasqal



simulate matter for...
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FeMoCo role in nitrogen fixation

HETEROCYSTS
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CELLS

Fig: A part of filament bearing
Heterocysts and Akinetes.
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quantum sensors

* lessinvasive imaging (MRI, MEG) and better precision biological sensors (NV centers).

drugs discovery diagnostics treatments
DNA sequence alignment. * medical images classification * persistence and health-
de novo DNA sequence. and reconstruction. related behavior prediction.
protein folding and * disease assessement based * treatment and intervention
interactions with ligands. on genomic samples. effectiveness forecasting.
force field and electronic * clinical data classification and * disease outbreak prediction
structure computation. analysis. and spread modeling.
screening and generation of » disease risk prediction. * precision oncology.
molecular entities as drug * clustering of similar * tailored radiotherapy.
candidates. individuals. * hospital capacities
drug retargeting. optimization.

simulating nature data processing search and optimizations

chemical simulations. * images and structured data. * various datasets.

* quantum machine learning.

inspired from “The state of quantum computing applications in health and

medicine” by Frederik F. FIother, IBM Quantum, January 2023.
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guantum sensing
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sensor type

atomic vapor

neutral atoms

solid state

cold atom clouds

Rydberg atoms

trapped ions

spin NMR
ensembles NV/SiC center ensembles
P donor in Si
smgle quantum dot
spins

single NV center

SQUIDs
superconducting .
circuits flux qubits
charge qubits

single electron transistor
optomechanics

interferometer

qubit nature

atomic spin
atomic spin
Rydberg states
electronic state
vibrational mode
nuclear spins
electron spins
electron spins
electron spins
electron spins
supercurrent
circulating current
charge eigenstates
charge eigenstates
phonons

photons, atoms
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(cc) Olivier Ezratty, 2022-2024, based on Quantum sensing by C. L. Degen, F. Reinhard and P. Cappellaro, June 2017



guantum sensors in healthcare

G nami Ch%;r'on mr-‘ieoll:.h

Laser Scanning probe

magnétometres ultrasensibles S prees

210 fT/v/Hz

medical imaging SQUID based helium 4 nucleus spin
biological analysis ultra-low field MRI MEG brain imaging
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EDWARD
SNOWDEN
AFFAIR

. Exposing the Politics
Y\ and Media Behind
the NSA Scandal

Michael Gurnow

Connectivity

Quantum Computing
Paranoia Creates a
New Industry

Even though quantum computers don't exist yet,
security companies are preparing to protect against

them.
MIT

by Tom Simonite  January 30,2017 TeCh_nOIOQy
Review

ear sells in the computer security business. Andin late 2015
F Massachusetts-based Security Innovation got an unexpected
boost from one of the scariest organizations around—the
National Security Agency.

For six years the company had been trying to create a new revenue
stream by licensing an unusual encryption technology called NTRU,
which it acquired from four Brown University mathematicians. It was
invented as a solution to the powerful code-breaking power of
computers that exploit quantum physies, but interest was slack because
quantum computers didn’t yet exist or look likely to exist anytime soon.



quantum telecommunications

classical technologies

QRA

quantum resistant cryptography
classical cryptography resisting to

quantum algorithms

PQC
post-quantum
cryptography

new classical asymmetric
keys and signatures
resisting to quantum
algorithms

symmetric keys
classical cryptography
already resistant to
quantum algorithms (AES,

)

Quantum Key Distribution (QKD)

V1
first generation,
prepare-and

measure based,
protects public keys
sent through optical

links, use trusted
nodes as repeaters

QRNG
quantum random key
generators
ensure the quality of
public keys in classical
and quantum
cryptography

quantum technologies

quantum Internet

V2 QCKA distributed quantum computing
second generation, Quantum connection between quantum computers and
entanglement based, Conference Key sensors, blind quantum computing
protects public keys Agreement
sent through optical entangled quantum quantum QsDC
links, use memory keys shared with computing Quantum Secure

based repeaters more than 2 parties.

cryptography Direct Communication

generated by a quantum data
quantum transfer without
computer encryption keys

entanglement distribution T
quantum teleportation

entangled photons distribution
to multiple parties \
teleporting one qubit state to another

T qubit using entanglement distribution

quantum repeaters
with quantum memory, enable
entanglement sharing over
long distances

(cc) Olivier Ezratty, 2023



quantum random number generators
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Information Technalogy Labaratory

COMPUTER SECURITY RESOURCE CENTER

Comments Requested on Three Draft FIPS for Post-Quantum
Cryptography

August 24,2023
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industry vendors country + creation year
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Country Computing Enabling  Sensing  Services Sec Total

USA 70 43 19 4 32 168
UK 23 17 8 5 20 73
France 14 29 10 4 6 63
Canada 34 8 5 14 61
Germany 25 22 4 1 7 59
Japan 13 7 1 4 25
China 11 2 10 23
India 13 3 5 21
Switzerland 4 9 1 5 19
Netherlands 8 4 1 1 3 17
Spain 9 4 2 15
Finland 5 3 2 3 13
Israel 6 2 2 3 13
Australia 6 1 3 1 2 13
Italy 3 3 1 1 3 11
Denmark 3 6 2 11
Singapore 6 1 1 1 1 10
Sweden 3 5 8
Poland 4 1 2 7
Russia 2 4 6
South-Korea 2 3 5
Austria 3 2 5
Taiwan 1 1 2 4
Estonia 2 1 3
Tchekia 1 1 2
Turkey 1 1 2
Hong-Kong 2 2
Belgium 2 2
UAE 2 2
Bulgaria 1 1 2
Greece 2 2
Chile 1 1
Bielorussia 1 1
Luxembourg 1 1
Columbia 1 1
Lybia 1 1
Uruguay 1 1
Slovenia 1 1
Norway 1 1
Ukraine 1 1
Total 282 172 58 25 139 676

source : Olivier Ezratty compilation, 2023
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what makes EU* unique in quantum

1. strong public research and academia
2. dynamic quantum industry ecosystem
3. enabling technologies leadership

4. HPC and early pilot projects

5. responsible innovation

* adding UK and
Switzerland when
convenient




Breakdown of scientific publications by country of origin
over the period 2010 - 2020

0 2000 4000 6000 8000 10000 12000

US| ——— 22.2%
china - | 155 %
Canada _ 45 %

japan [ 4.3 % EU and Europe are #1 worldwide
Australia [ 3.6 % in quantum relat.ed scientific
production
India - 29%

Korea - 1.7%
row - [ 107%

Quantum technologies: patent applications vs. scientific publications across the world by Sébastien Ragot and Michel Kurek, November 2021
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first guantum computers in EU
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the « true » global investments

USA

EU + member states

China

Canada

UK

India

South Korea

Russia

Australia

Japan

Israel

Germany

France

industry
funding

source: Olivier Ezratty compilation, December 2023, on a 5 year period,

past, present or future spending depending on the country. Euro/$ parity.
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Key findings:
The European Union and its member states

are #1 worldwide public investors in
quantum technologies.

EU lags the USA only in private investments,
both due to the large IT investments (can’t
be fixed) and larger funding rounds for their
large startups (could be fixed).

China is behind the USA and the EU for both
private and public investments in quantum
technologies.

Chart hypothesis:

Classified military/intelligence expenses,
in the USA and China: estimated at 30% of
civil expenses.

Most countries do not include legacy
public investments in their numbers:
unlike France.

Investment duration: data normalized

over 5 years period, particularly for the UK.

Large IT vendors quantum investments
are guestimates: IBM, Google, Microsoft,
Intel, Alibaba, Baidu, etc.

Undisclosed early stage investment in
startups: is usually negligible.

Unspent amounts not accounted for: like
probably in India.
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28 Explore GPTs

Today
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New chat
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Olivier E
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You
in the scientific litterature, qubit gate fidelities are often presented like this: 99.914(3)%
what is the meaning of the number between parentheses?

ChatGPT

In scientific literature, when qubit gate fidelities are presented as "99.914(3)%", the number in
parentheses—(3) in this case—indicates the uncertainty or the error margin of the last digits in
the reported measurement. This is a concise way to express the standard error or uncertainty

associated with the measurement.
Here's a breakdown of what each part means:

* 99.914% is the central or mean value of the fidelity. It suggests that the fidelity of the qubit gate,
or how well it performs its intended operation, is 99.914%.

* (3) is the uncertainty in the last digit of the fidelity, scaled to the same decimal place. In this
case, it indicates an uncertainty of 0.003%. This means the true fidelity is expected to be within
the range of 99.911% to 99.917%.

This notation helps in understanding the precision of quantum gate operations and is crucial for

developing reliable quantum computing systems.

OO PR

@ Message ChatGPT...

ChatGPT can make mistakes. Consider checking important information.




Anne
Matsuura

Director of Quantum &
Molecular
Technologies, Intel.

Sophia
Economou

condensed matter
physics, Virginia Tech,
USA.

Krysta Svore

Microsoft Quantum
Software GM, MBQC,
QML, LIQUi|>,
surface codes, FTQC.
USA.

Sarah
Sheldon
IBM Research,
superconducting

qubits, quantum
volume, USA.

Patty Lee

Honeywell
Quantum System
Chief Scientist,
USA.

L

llana Wisby
CEO of Oxford
Quantum Circuits, UK

Elena Calude

quantum supremacy,
complexity theories,
algorithms, New
Zealand.

3

Julia Kempe

random walks, FTQC,
Director of Data

Science NYU, French,

German and Israeli.

Maud Vinet

CEO of Quobly, France

Elham Kashefi

CNRS LIP6, University of
Edinburgh, blind
computing, qPUFs,
cofounder of Verigloud.

Alexia Auffeves

CNRS Majulab Singapore,

quantum thermodynamics,

cofounder of the Quantum
Energy Initiative, CSM
ontology, Singapore.

Pascale Senellart

CNRS C2N Palaiseau,
indistinguishable quantum
dots photons source,
cofounder of Quandela,
member of the French
Academy of Science.

Elvira
Shishenina

BMW Quantum Software
lead, Russian and French.

e W
Stephanie
Wehner

Coordinator of
Quantum Internet
Alliance, German, TU
Delft.

Tracy Northrup
optical cavities and
trapped ions, University
of Innsbruck, USA.

Dorit Aharonov

threshold theorem,
quantum algorithms,
computational
complexity, QEDMA
cofounder, Israeli.

Maria Schuld

quantum machine

learning, Xanadu,
based in South
Africa, German.

Jacqueline
Bloch

polaritons guru, CNRS

C2N, France. Member
of the French

Academy of Science.

b

Eleni Diamanti

quantum

cryptography and
telecoms, photonics,
CNRS LIP6, WelinQ
cofounder, France.

Michelle
Simmons

atomic scale devices,
single electron
transistors, electron
spins qubits, director of
CQC2T, CEO of sQC,
Australia.

Mio Murao

runs the Murao group
from University of
Tokyo, distributed
quantum computing,

simulation algorithms,

quantum

telecommunication
protocols, Japanese.

Christine
Silberhorn

Francesca quantum optics,
Ferlaino ultrafast pulse
lasers, Paderborn

quantum gases and University, German.

supersolids, Italian-
Austrian.

photo credits: Olivier Ezratty for Alexia Aufféves, Maud Vinet,
Elham Kashefi, Pascale Senellart, Elvira Shishenina and Eleni
Diamanti; various other photographers for the other scientists.
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