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the second quantum revolution

superposition
linked to wave-particle

duality and linearity of
Schrédinger’s equation

entanglement

state correlation of
distant quantum objects,
but random and after
measurement

individual control of
guantum objects

electrons, photons,
atoms
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quantum computing
guantum telecommunications
guantum cryptography

quantum sensing



quantum technologies sciences
% physics Tc mathematics \ivr human sciences

electromagnetism linear algebra philosophy
guantum physics groups theory epistemology
guantum matter analysis sociology
thermodynamics complexity theories technology ethics
fluids mechanics economics of innovation
photonics #vv. computer science R&D policy making
LEW £
information theory geopolitics
@ engineering algorithms design startups ecosystem
materials design programming
electronics engineering classical computing
cryogenics telecommunications

machine learning



typical difficult problems
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combinatorial optimizations
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solving Schrodinger’s wave equation

to simulate quantum matter
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solving partial derivative equations

machine learning
and deep learning



quantum computing science applications

Load / Charger

high-energy
particle physics

semiconductors nuclear fusion

fertilizers materials condensed
production design matter physics

astrophysics



key QPU challenges

° 433
® aeweo 127 8
100 5
° - El
A 65 O
® Alibab; w0 8
® Googl e o . @
1BM 0 27 >
. ° £
e oM o %o ooo . 20 §
® 1m0 i il 15
° 13
® oqc o o 10 -
© Origin Quantum ee ° ° ;2
® QuEra £
Quandela oo -
@ Quantinuum
® Rigetti
® SeeQC
® Zuchongzhi
1
0.01% 0.10% 1.00% 10.00% 100.00%

average two-qubit gate error rates

qubits fidelities

enabling technologies scalability

energy consumption

(t optical fiber to quantum network)
. i -

(e)t type modularity involves microwave-to-optical transduction to
link QPUs in different dilution refrigerators,

quantum interconnect

o

—=20 0 20 40
Detuning (MHz)

quantum memory



some software challenges
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what is being practically done

classical computers

quantum
inspired

quantum
emulators

* financial services  * code learning.
solutions

improvements.

* code debugging.
* designing new

* machine learning algorithms.

improvements. « simulating qubit
physics.
* simulating error
correction codes.
UALPHARAIL  Qubit €

PHARMACEUTICALS

«» NatWest

analog quantum computers

guantum analog
annealing quantum
computers simulators

* solving optimization problems at mid-
sized scale, in transportation
(Volkswagen, Denso), retail (Ocado,
Pattison), job shop scheduling and
financial services (Mastercard, CACIB).

* physics simulations (statistical physics,
spin glass, ferromagnetism, topological
matter, ...).

* potential energetic advantage.

€ CaixaBank
x Raiffeisen Bank

International
Member of RBI Group

@‘I CREDIT AGRICOLE

CORPORATE & INVESTMENT BANK

digital guantum computers
gate-based

NISQ (Noisy Intermediate
Scale Quantum)

FTQC (Fault-Tolerant
Quantum Computing)

* large algorithms and
resource estimations.

* low-level physics
simulations (“IBM
quantum utility” with 127
qubits and kicked Ising
model).

* creating and testing
error correction
codes (Google,
Quantinuum, QuEra,
PsiQuantum, ...).

* creating and testing
algorithms at small scale
(QML, optimizations,
chemical simulations).
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assessing QC case studies

criteria casel case 2

problem sizing larger scale

resource estimates tested with
<30 qubits
results quality

quantum advantage energetic costs

NISQ or
PU type analo
Q yp emulator 8
equivalentto a approaching
classical quantum

computing case advantage

case 3

large scale

>1,000 logical
qubits

case 4

very large
scale

>10K logical
qubits

speedup

FTQC

long-term
applicability

large FTQC

very long-term
applicability
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simulate matter for...

Load / Charger
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guantum digital
twins to create
better batteries

MITSUBISHI
CHEMICAL

battery simulation
lithium-oxygen
source: IBM

Mercedes-Benz

battery simulation
estimating the cost of electrolyte

simulation on PsiQuantum’s future QPU.

source: PsiQuantum, Mercedes-Benz

@& HYUNDAI

battery simulation

model lithium oxide to understand how
batteries age over time

source: Hyundai, lonQ

DAIMLER

battery simulation
lithium-sulfur battery design
source: IBM

battery simulation

simulating magnetism and spins
source: Samsung, Honeywell

.

TotalEnergies
battery materials design

simulating Mott insulator transitions in battery
electrode materials and ceramic superconductors
and discharge curve of Li,CoO,.

source: Total, Pasqal



Li-lon battery chemical simulation

PHYSICAL REVIEW A 106, 032428 (2022)

needs...

6,652 logical qubits

1012 error rate

computing times in months/years

VOLKSWAGEN

XANADU

Toffoli gate cost

Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer

Alain Delgado®,"" Pablo A. M. Casares ®,>" Roberto dos Reis ®,3 Modjtaba Shokrian Zini,' Roberto Campos ©,%*

Norge Cruz-Herndndez®,” Arne-Christian Voigt,® Angus Lowe,' Soran Jahangiri®,' M. A. Martin-Delgado ®,>”
Jonathan E. Mueller ®,° and Juan Miguel Arrazola!-
Xanadu, Toronto, Ontario, M5G 2C8, Canada
2Departamento de Fisica Tedrica, Universidad Complutense de Madrid, 28040 Madrid, Spain
3Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
4Quasar Science Resources SL, 28231, Las Rozas de Madrid, Spain
SDepartamento de Fisica Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville, E-41011, Spain
Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany
7CCS-Center for Computational Simulation, Universidad Politécnica de Madrid, 28040 Madrid, Spain

®  (Received 27 April 2022; revised 14 July 2022; accepted 10 August 2022; published 26 September 2022)
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LNO battery simulation

System  LCU  k-mesh A Num. Spin-Orbs. Toffolis  Logical Qubits Physical Qubits [M] run time [days]
< R3m Sparse [2,2,2] 120382.037 116 6.16x107 166946 242.72 1.51x107
0 Ie [3,3.3] 718377.133 116 3.57x10"° 1625295 2808.82 9.82x10°
SF [2,2,2] 183778.821 116 7.86x10" 80162 120.77 1.93x10*
[3,3.3] 2066279.293 116 4.60x10'° 404723 699.68 1.27x10°
. . . . DF  [2,2,2]  10730.422 116 4.97x 10" 149939 180.16 1.08x10°
LINIO2 chemistry simulation [3.3.3]  44794.803 116 7.28% 10" 508286 869.02 1.79x10*
C2/m Sparse [2,2,1]  58422.522 116 1.03x10" 83532 100.47 2.53x10°
. [4,4,2] 893339.394 116 5.37x10"° 3051285 5272.93 1.48x10°
from 75K to 3M |Oglca| SF[2,2,1]  95803.204 116 2.05x10" 44657 53.90 5.05x10°
. [4,4,2] 2899609.300 116 5.23x 10" 405310 700.69 1.44x10°
CIUbItS and 91M to 6G DF [2,2.1]  4873.648 116 L18%10' 75178 90.44 2.56 10°
. . [4,4,2]  51416.281 116 9.82x10" 508736 869.68 2.41x10*
phys|ca| QUbItS P2/c Sparse [1,1,1]  84977.359 464 2.06x10 99918 120.21 5.07x10°
2,2,2] 1627121.892 464 1.67x 1010 3182362 6454.14 4.59%10°

2,2,2]

. . . SF [1,1,1] 201894.726 464 8.74x10" 92786 135.04 2.15x10*
requires phy5|cal qt.IbItS [2,2,2] 5666363.179 464 2.07x10%¢ 830487 1450.95 5.68x10°
DF  [1,1.1] 2753.901 464 9.72x10" 75834 91.23 2.11x10%
ith 0.01% t 2.2,2]  40788.11:
Wi . 0 error rates [2,2,2]  40788.113 464 1.40%10 1192900 1732.40 3.44%10
P2i/c Sparse [1,2,1] 105584.297 232 3.39x 10" 182864 265.83 8.34x 10"
. H [2,4.2] 1714723.913 232 1.50x10'° 3116825 6321.24 4.12x10°
computlng time from one SF  [1,2,1] 271178.934 232 8.92x 10" 96882 140.98 2.19x10*
[2,4,2] 7798992981 232 2.13x10' 438080 757.32 5.85x10°
year to 21739 years DF [1,2,1]  3958.111 232 1.27x10" 75383 90.69 2.76x10°
[2,4,2]  46189.645 232 1.23x 10" 1192758 1732.20 3.02x 10

source: Fault-tolerant quantum simulation

TABLE VI. Quantum Resource estimates for all four LNO structures normalized by the number of formula units represented
in each simulation cell. R3m and C2/m are both one formula unit while P2/c is four formula units and P2, /c is two formula
units. The sparse threshold is selected to be 1.0 x 10~ %, the SF the auxiliary index is truncated at eight times the number of
molecular orbitals, and the DF the second factorization is truncated at 1.0 x 107%,

of materials using Bloch orbitals, Nicholas C.
Rubin, Ryan Babbush et al, February 2023
(58 pages).



simulate matter for...

Production of the synthesis mixture

Production of ammonia

methane CHq
water Ho.O

pre-heater
N2 Hz CO2

catalyst waste heat
boil
CI-E—I;O compressor oller
CO + 3Hz T
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* H20
catalyst
450 °C .
M compressor amlquma
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Catalyst development strategies

ing number of active sites

Performance

producing
fertilizers with
less energy
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FeMoCo role in nitrogen fixation

HETEROCYSTS

VEGETATIVE
CELLS

Fig: A part of filament bearing
Heterocysts and Akinetes.

cyanobacteria

bacteria producing
ammonia in soil and water
or legume plants root
nodules

SEssssssssssEsEEEEmEn
Cyanobacteria heteracyst "

CyanBbacteria vegetative cell
.

Glycolysis and
citric acid cycle

electrons coming from
hydrogenases ge

heterocyst

cell within cyanobacteria that
support the chemical
pathways producing
ammonia using dinitrogen

Electron ransport chain
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nitrogenase

protein complex
producing
ammonia in
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MoFe,S,C

FeMoCo complex
part of the two nidDK proteins in
some nitrogenases that is
involved in ammonia production



simulating FeMoCo

need...
2,142 logical qubits
4M physical qubits

4 days computing time

real need:

* simulate full NH, creation chemical
pathway.

* design a new industry-grade
pathway.

* simulate it with a lot of tries.
* optimize it with real-life scenario.

Algorithm

PRX QUANTUM 2, 030305 (2021)

Even More Efficient Quantum Computations of Chemistry Through Tensor
Hypercontraction

Joonho Lee®,!"™¥ Dominic W. Berry,> ¥ Craig Gidney,® William J. Huggins,® Jarrod R. McClean,’

Nathan Wiebe,*? and Ryan Babbush®?+
1De]_nczr."men.f of Chemistry, Columbia University, New York, New York, USA
2Deparrmenr of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
3Go()gle Quantum Al, Venice, California, USA
aDeparrment of Physics, University of Washington, Seattle, Washington, USA
sPa('gﬁc Northwest National Laboratory, Richland, Washington, USA

™ (Received 12 December 2020; revised 7 April 2021; accepted 24 May 2021; published 8 July 2021)

Reiher et al. FeMoCo [23] Li et al. FeMoCo [36]

Logical qubits ~ Toffoli count  Logical qubits  Toffoli count

Go Ie Reiher et al. [23] (Trotter) 111 5.0 x 1013 — —
Campbell and Kivlichan et al. [52,53] (qDRIFT) (D16), (D17) 288 5.2 x 1077 328 1.8 x 1078

qDRIFT with 95% confidence interval (D34) 270 1.9 x 106 310 1.0 x 106

source: Even More Efficient Quantum Berry et al. [9] (single factorization) (B16), (B17) 3,320 9.5 x 1010 3,628 1.2 x 10"
Computations of Chemistry Through Tensor Berry et al. [9] (sparse) (A17), (A18) 2,190 8.8 x 1010 2,489 4.4 x 1010
Hypercontraction by Joonho Lee, Craig Gidney von Burg et al. [10] (double factorization) (C39), (C40) 3723 10 1010 £.404 A4 1010

et al, July 2021 (62 pages).
https://journals.aps.org/prxquantum/pdf/10.
1103/PRXQuantum.2.030305

This work (tensor hypercontraction) (44) (46) | 2142 53 x 10° 2,196 3.2x 10" |



https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.030305
https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.030305

CO2 capture

QUANTUM | RESEARCH UPDATE

Carbon-capture technology could benefit from quantum

computing
05 Apr 2023

Description of reaction and vibrational energetics
of CO>-NHj5 interaction using quantum computing
algorithms 4

Cite as: AVS Quantum Sci. 5, 013801 (2023); doi: 10.1116/5.0137750
Submitted: 5 December 2022 - Accepted: 30 January 2023 - A A
Published Online: 14 March 2023 0

Manh Tien Nguyen,'” ¢ Yueh-Lin Lee,"” . Dominic Alfonso,' . Qing Shao,”  and Yuhua Duan'""

AFFILIATIONS

"National Energy Technology laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA
“Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, USA
*NETL Support Contractor, Pittsburgh, Pennsylvania 15236, USA

2 Author to whom correspondence should be addressed: yuhua duan@netl doe.gov
“'Tel.: 412-386-5771

* VQE algorithm tested on 20 qubits.
* not yet in a quantum advantage regime.
g{jg&%}s@?ﬂn\,ﬁ[{g)ﬁmSUC conception of a molecule being simulated by a quantum computer. (Courtesy: ° not a So|uti0n for Carbon Capture.




modeling climate and weather

Quantum Enabled Business Industry v Solutions v Learn Company v

BASF Collaborates with PASQAL to Predict Weather

Patterns

rigetti

Rigetti Enhances Predictive Weather
Modeling with Quantum Machine Learning

December 01, 2021 09:00 ET| Source: Rigetti Computing m

with 32 qubits!

ar <1V > quant-ph > arXiv:2210.17460

Quantum Physics

[Submitted on 31 Oct 2022]

Quantum Computers for Weather and Climate Prediction: The
Good, the Bad and the Noisy

Felix Tennie, Tim Palmer

Over the past few years, quantum computers and quantum algorithms have attracted considerable interest and
attention from numerous scientific disciplines. In this article, we aim to provide a non-technical, yet informative
introduction to key aspects of quantum computing. We discuss whether quantum computers one day might
become useful tools for numerical weather and climate prediction. Using a recently developed quantum
algorithm for solving non-linear differential equations, we integrate a simple non-linear model. In addition to
considering the advantages that quantum computers have to offer, we shall also discuss the challenges one
faces when trying to use quantum computers for real-world problems involving "big data”, such as weather
prediction.
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quantum sensors

* lessinvasive imaging (MRI, MEG) and better precision biological sensors (NV centers).

drugs discovery diagnostics treatments
DNA sequence alignment. * medical images classification * persistence and health-
de novo DNA sequence. and reconstruction. related behavior prediction.
protein folding and * disease assessement based * treatment and intervention
interactions with ligands. on genomic samples. effectiveness forecasting.
force field and electronic * clinical data classification and * disease outbreak prediction
structure computation. analysis. and spread modeling.
screening and generation of » disease risk prediction. * precision oncology.
molecular entities as drug * clustering of similar * tailored radiotherapy.
candidates. individuals. * hospital capacities
drug retargeting. optimization.

simulating nature data processing search and optimizations

chemical simulations. * images and structured data. * various datasets.

* quantum machine learning.

inspired from “The state of quantum computing applications in health and

medicine” by Frederik F. FIother, IBM Quantum, January 2023.



fasten drug discovery

Discovery research

Target identification

4-5 years 10 000 molecules
Hit identification - Docking
 Virtual screening

60 i
10°Y of possible  Pharmacohore mapping

TR B Hit to lead - De novo design

10s of parameters - QSAR

to be optimised » Molecular dynamics

1000s of compounds | ead optimisation « Quantum mechanics
to be synthesised 200 molecules « Enhanced sampling

=W Drug candidate

5 molecules
Yt Developement

NS ielilelsBl 1 molecule

this part could
potentially be
accelerated thanks to
quantum computing

Source: Drug design on quantum computers by Raffaele Santagati, Alan Aspuru-Guzik, Nathan Wiebe et al, January 2023 (9 pages)

21



protein folding requirements

Secondary Structure Tertiary Structure
(Local structural elements) (Overall protein fold)

Turns L
Random coil -

Light chains
Heavy chain
Backbone
Primary Structure Quaternary Structure

(Aminoacid sequence) (Protein complex)

Source: FAQS Higher Order Structure and HOS Comparisons Explained.



challenges

NVIDIA.

S

Q Google DeepMind

AlphaFold 3 can now generate predictions for Blackwell GPU with 200 billion transistors
nearly all molecules in the Protein Data Bank and DGX B200 with 8 B200, 144 petaFLOPS
(PDB), frequently reaching atomic accuracy inference workloads.

Source: A glimpse of the next generation of AlphaFold, Google DeepMind AlphaFold team and Isomorphic Labs team, October 2023.



drug
discovery
pipeline

\ Y e BT
Iterative Optimization / classical optimization \
T circuit parameter
N /
source: Generalizable 5 T
Quantum Computing \ quantum clrcuit execution /
Pipeline for Real World Drug a
Discovery by Weitang Li et al,
HTS: High Throughput Screening

arXiv, January 2024.



D-Wave use cases in healthcare

v

s

genuity
cancers classification

multi-omics: genomics + symptoms in QML
source: D-Wave

>
accenture

liver donor optimization
NP-complet complete problem using QUBO
source: Accenture, D-Wave

Ve
ROSWELL
- PARK.

radiotherapy optimization
to minimized x-ray dose
source: Roswell Park, D-Wave

MY menten Al N TR

de-novo proteins and polypeptides creation
with hybrid computing, tests in research against the covid-19 virus.

source: D-Wave

accenture 1QBIt ” Biogen

drug retargeting
with Biogen, 1QBit and Accenture research
source: D-Wave

D:\WaUl

The Quantum Computing Company™



Pasqal use cases in healthcare

quantum algorithms able to
sample equilibrium water solvent
molecules configurations within
proteins thanks to analog
guantum computing

Leveraging Analog Quantum Computing with Neutral
Atoms for Solvent Configuration Prediction in Drug L

Discovery
PASQAL

Mauro D’Arcangelo’ *, Daniele Loco* *, Fresnel team!, Nicolai Gouraud?®3, Stanislas
Qubit ¢

Angebault?, Jules Sueiro?, Pierre Monmarché?, Jéréme Forét?, Louis-Paul Henry', Loic
Henriet":", and Jean-Philip Piquemal®*"
PHARMACEUTICALS

1Pasqal, 7 Rue Léonard de Vinci, 91300 Massy, France
2Qubit Pharmaceuticals, Advanced Research Department, 24 rue du Faubourg Saint-Jacques, 75014 Paris,

France

3Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005, Paris, France
4Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005, Paris, France
*loic.henriet@pasaal.com, jean-philip.piquemal@sorbonne-universite.fr

*these authors contributed equally to this work

Quantum Feature Maps for Graph Machine Learning on a Neutral Atom
Quantum Processor

Boris Albrecht,!s* Constantin Dalyac,2 * Lucas Leclerc,’3 * Luis Ortiz-Gutiérrez,'> * Slimane
Thabet,'2'* Mauro D’Arcangelo,! Vincent E. Elfving,! Lucas Lassabliére,! Henrique
Silvério,! Bruno Ximenez,! Louis-Paul Henry,! Adrien Signoles,! and Loic Henriet! t

YPASQAL, 7 rue Léonard de Vinci, 91300 Massy, France
2LIP6’,V CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
3 Université Paris-Saclay, Institut d’Optique Graduate School,
CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
(Dated: November 30, 2022)

toxicity screening experiment, consisting of a binary classification
protocol on a biochemistry dataset comprising 286 molecules of sizes
ranging from 2 to 32 nodes, and obtain results which are comparable to
those using the best classical kernels

Antoine Michel,’»?:* Sebastian Grijalva,? Loic Henriet,® Christophe Domain,

A blueprint for a Digital-Analog Variational Quantum Eigensolver using Rydberg

atom arrays

! and Antoine Browaeys?

1 Electricité de France, EDF Recherche et Développement,
Département Matériauz et Mécanique des Composants,
Les Renardiéres, F-77250 Moret sur Loing, France
2 Université Paris-Saclay, Institut d’Optique Graduate School,
CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau Cedex, France
3PASQAL, 7 rue Léonard de Vinci, F-91300 Massy, France
(Dated: April 25, 2023)

estimating the ground-state energy of Hamiltonians coming from
chemistry. Study numerically the behavior of a digital-analog
variational quantum eigensolver for the H2, LiH and BeH2 molecules.



chemistry and healthcare QC startups
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guantum sensors in healthcare

G nami Ch%;r'on mr-‘ieoll:.h

Laser Scanning probe

magnétometres ultrasensibles S prees

210 fT/v/Hz

medical imaging SQUID based helium 4 nucleus spin
biological analysis ultra-low field MRI MEG brain imaging
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machine learning helps everywhere
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quantum error mitigation [La[es'w]T] [ m*[mazlm]
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- LLM-based chatbots are one broad category of “generative Al” solutions.
- but they are bound to integrate many other gen Al solutions in their Ul.
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generic LLM-based chatbot capabilities

answer to questions
summarizing texts

commenting and evaluating texts
producing synopsis and memos
translating texts

creating text “ala” somebody

creating a quiz

identifying images content

creating images based on description
creating data charts

creating software code



ChatGPT 4.0 overall architecture

ChatGPT 4.0
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Custom Instructions (O

# 1 What would you like ChatGPT to know about you to provide better responses?
defl ne you r | am working in the quantum science and technology fields as a
user p r0f| |e generalist engineer, author and teacher.

| want to understand many facets of quantum computing,
communications and sensing.
#2 | am interested in both quantum physics and quantum
|ea rn technologies, hardware and software.

| wrote a generalist book on quantum technologies but lam not a
prompt auantum nhvsicist hv trainina.

engineering 371/1500

How would you like ChatGPT to respond?

#3

faCt CheCk Avoid u5|r.'|g lists in resp_onsg_s. _
I t Respond in the most scientifically detailed way.
resuits Always create pictures in 16/9 format when using Dall-E.

Provide up to date references and sources whenever possible.



current amazing use cases

basic qguantum science knowledge: well done in most fields.

figures of merit: single photon sources, detectors, PNR,
circulators, TWPA

inventories: materials used in superconducting qubits, research
avenues in some domain,

simple maths and logic and continuously improving.
bibliography: getting better with ChatGPT 4.0.

quiz: 48 multiple choice questions on everything quantum.
coding: Python for creating charts, PHP, regex, VBA, ...



inventories

You

| am currently studying how superconducting qubits chips are manufactured. Could you make an
inventory of the materials (elements) used in this process? | would like to understand their role,
meaning in which part of the circuit they are used. | would like to know their advantages and
shortcomings when several of them can be used to build the same element. | would like to know
how these materials are deposited on the circuit (sputtering, MBE, etc).

174

ChatGPT
Manufacturing superconducting qubit chips involves a sophisticated process that incorporates

various materials, each selected for its unique properties that are conducive to quantum
computing applications. These materials play crucial roles in different parts of the
superconducting circuits, such as the qubits themselves, the interconnects, the resonators, and
the substrate. The deposition techniques used to apply these materials onto the circuit are critical

for defining the quality and performance of the qubits.



Materials Used in Superconducting Qubit Chips

Niobium (Nb) and Aluminum (Al): These are the primary materials for the superconducting
elements of the qubit circuits, including the Josephson junctions. Niobium offers a high critical
temperature and is widely used in RF SQUIDs, while aluminum is preferred for its excellent
superconducting properties at very low temperatures and its ability to form high-quality oxide
layers for tunnel barriers in Josephson junctions.

Silicon (Si) and Sapphire (Al203): These materials are commonly used as substrates for
superconducting qubits due to their low loss at microwave frequencies, which is crucial for
maintaining quantum coherence. Sapphire is often chosen for its excellent thermal and dielectric
properties, whereas silicon is preferred for its compatibility with traditional semiconductor
fabrication techniques.

Aluminum Oxide (AlIOx): This is used to form the tunnel barrier in Josephson junctions through
the oxidation of aluminum. The quality of the aluminum oxide layer is pivotal for the performance
of the Josephson junctions, impacting the critical current and, by extension, the qubit's energy
levels.

Copper (Cu) and Gold (Au): These are used for wiring and interconnects due to their excellent
conductivity. Gold is particularly valued for its resistance to oxidation, ensuring longevity and

reliability of the connections. J



Advantages and Shortcomings

* Niobium is favored for its higher critical temperature, making it more robust to thermal
fluctuations. However, it is more challenging to integrate with other materials compared to
aluminum.

* Aluminum is preferred for its ability to easily form a high-quality oxide layer for Josephson
junctions, but it has a lower critical temperature than niobium, which necessitates operation at
lower temperatures.

* Sapphire substrates offer superior dielectric properties and thermal stability, but they are more
expensive and difficult to process than silicon substrates.

* Silicon substrates are widely used due to their lower cost and compatibility with conventional
semiconductor processes, though they may introduce more loss at microwave frequencies than

sapphire.



Deposition Techniques

* Sputtering: A widely used technique for depositing thin films of metals like niobium and
aluminum. It is favorable for its simplicity and control over film thickness and composition.

* Molecular Beam Epitaxy (MBE): This technique is used for creating high-quality semiconductor
heterostructures. It offers excellent control over the growth process at the atomic level, beneficial
for materials requiring precise layer thicknesses and composition, such as the tunnel barriers in
Josephson junctions.

* Thermal Oxidation: Specifically used for the formation of aluminum oxide layers in Josephson
junctions. Aluminum layers are exposed to oxygen at elevated temperatures to grow a controlled
oxide layer.

* Atomic Layer Deposition (ALD): Used for depositing thin films with atomic layer precision. This
technique is particularly useful for creating uniform and conformal insulating layers, essential for

reducing loss in superconducting circuits.



You
how about tantalum and indium?

ChatGPT
Tantalum (Ta) and Indium (In) are two additional materials that find applications in the

manufacturing of superconducting qubit chips, each contributing unique properties that can

enhance the performance and fabrication of superconducting circuits.

Tantalum (Ta)

Tantalum is a material with superconducting properties that are advantageous for certain types of

superconducting qubits and components.

* Role and Advantages: Tantalum's higher critical temperature compared to aluminum, along with
its strong superconducting properties, makes it a suitable choice for fabricating
superconducting resonators and qubits. It is particularly valued for its ability to form robust and
reliable superconducting films that can support high-quality factors in resonators, which is
critical for maintaining coherence in superconducting qubits.

* Shortcomings: The challenges with tantal 0 include its relatively more complex processing

requirements compared to more commonly used superconductors like aluminum. This



Indium (In)

Indium is not typically used as a primary material for the superconducting elements themselves
but plays a critical role in the assembly and interconnection of superconducting qubit

components.

* Role and Advantages: Indium is often used as a material for bonding and interconnects due to its
excellent thermal conductivity and malleability. It can be used to create low-resistance contacts
between different parts of the superconducting circuit or between the chip and its package. This
is particularly important for ensuring efficient thermalization of the components, a critical aspect
for operating at the millikelvin temperatures required for superconducting qubits.

* Shortcomings: One limitation of indium is its softness and low melting point, which can pose
challenges in terms of mechanical stability and reliability over long-term operation or at higher
temperatures.

* Deposition Techniques: Indium can be deposited using thermal evaporation or by direct
application in the form of indium solder or indium bumps for chip bonding. These techniques are
chosen for their ability to create strong, reliable thermal and electrical connections, essential for

the low-temperature environment in which superconducting qubits operate.



creating schemas: wrong content and labelling (Dall-E).
Missing generative adversarial (GAN) features.

summarizing scientific papers:

analyzing charts in scientific papers: not there yet.
finding missing figures of merit in papers: not there yet.
bibliographies: high rate of hallucinations (Bard).
reasoning: many mistakes

data consolidation (e.g.: qubit fidelities): mistakes + not done
anymore (Bard).



how could chatbots foster
creativity in research?

test hypothesis and conjectures
identify white spaces
suggest potential research investigations

connect the dots between disparate scientific
fields

Why the Conjecture Might Hold

Interference and Amplitude Amplification: Quantum algorithms that achieve
exponential speedup typically leverage quantum interference to amplify the
amplitudes of desired outcomes while cancelling out others. This process often
requires the coherent manipulation of quantum states over multiple steps, where an
oracle or a similar construct provides a way to selectively invert phases or amplify
probabilities associated with specific cutcomes. Without such a mechanism,
designing a quantum algorithm that collapses to a single correct outcome with high
probability (and thus fits the requirement of producing a "single item in the
computational basis") becomes significantly more challenging.

Structural Insights from Oracles: Oracles in quantum algorithms are not just
arbitrary black boxes; they often encapsulate problem-specific knowledge or
structure that allows the quantum algorithm to exploit quantum parallelism
effectively. This implies that the exponential speedup achieved by quantum
algorithms may inherently rely on some form of problem-specific insight or
structure, which oracles conveniently provide.

Role of the QFT in Expleiting Quantum Parallelism: The QFT's ability to reveal
hidden pericdicities or structures in quantum states is crucial for the exponential
speedup in algerithms like Shor's. Without the transformation provided by the QFT
or a similar mechanism, it may be difficult to extract useful information from a
superposition of quantum states in a way that leads to an exponential speedup for

general computational problems.

Q D ence and M rent: The process of measurement in

quantum computing collapses the quantum state to a single outcome in the
computational basis. To ensure that this outcome is the correct solutionto a
problem, with high probability, without relying on oracles or similar constructs,
requires a quantum algorithm to maintain coherence and precisely control
interference patterns up to the point of measurement. This precision is challenging
to achieve without structures like the QFT/IQFT, which are adept at manipulating
phase information across quantum states.

In summary, the conjecture that quantum algerithms providing an exponential
speedup without relying on oracles and yielding a single-item result may not exist
stems from the intricate interplay between quantum parallelism, interference, and
the structural insights provided by oracles or QFT-like mechanisms. These
components are central to the design of quantum algorithms that outperform their
classical counterparts. The conjecture reflects the current understanding of
quantum computing's limitations and the challenges in designing algorithms that
+

can leverage quantum mechanics in ¥ « ways to achieve exponential speedup fora



capabilities in quantum science
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natural sciences
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how will you be more creative when
you can easily access all Human
knowledge?
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