

UNIVERZA Fakulteta za matematiko V LJUBLJANI in fiziko

quantum computing

state of the art, challenges, and opportunities

olivier ezratty

{ author | ... }
Ljubljana, April 15th, 2024
olivier@oezratty.net www.oezratty.net @olivez

2023, 1,366 pages free PDF download

Toutes nos catégories - understanding guantum technologies 2023

Résultats

En apprendre plus sur ces résultats.

Understanding Quantum Technologies 2023 Volume 1 Édition en Anglais de Olivier Ezratty

Broché

24^{20€}

Livraison à 0.01€ mercredi 31 janvier dès 35€ d'achat de livres expédiés par Amazon

Acheté le oct. 2023 Understanding Quantum Technologies le lab quantique

Understanding Quantum Technologies 2023 Volume 3 Édition en Anglais de Olivier Ezratty

Broché 4066€

Livraison à 0,01 € mercredi 31 janvier

Understanding Quantum Technologies 2023 Volume 2 Édition en Anglais de Olivier Ezratty

le lab quantique

Understanding

Quantum Technologies

Q

Acheté le oct. 2023

Broché 4066€

Livraison à 0,01 € mercredi 31 ianvier

Amazon paperback edition in 3 volumes

quantum computing promise

typical difficult problems

solving Schrodinger's wave equation to simulate quantum matter

combinatorial optimizations

machine learning and deep learning

$rac{\partial^2 u_1}{\partial x_1^2} + rac{\partial^2 u_2}{\partial x_2 \partial x_1} +$	$-rac{\partial^2 u_3}{\partial x_3 \partial x_1} +$	$-rac{\partial^2 u_1}{\partial x_1^2}+rac{\partial^2 u_1}{\partial x_1^2}$	$\frac{\partial^2 u_1}{\partial x_2^2} +$	$rac{\partial^2 u_1}{\partial x_3^2}$ -	$f_1 = 0$
$\frac{\partial^2 u_1}{\partial x_1 \partial x_2} + \frac{\partial^2 u_2}{\partial x_2^2} +$	$-rac{\partial^2 u_3}{\partial x_3 \partial x_2} +$	$-rac{\partial^2 u_2}{\partial x_1^2}+rac{\partial^2 u_2}{\partial x_1^2}$	$\frac{\partial^2 u_2}{\partial x_2^2} +$	$rac{\partial^2 u_2}{\partial x_3^2}$ -	$f_2 = 0$
$\frac{\partial^2 u_1}{\partial x_1 \partial x_3} + \frac{\partial^2 u_2}{\partial x_2 \partial x_3}$	$+ \frac{\partial^2 u_3}{\partial x_3^2} +$	$-rac{\partial^2 u_3}{\partial x_1^2}+rac{\partial^2 u_3}{\partial x_1^2}$	$\frac{\partial^2 u_3}{\partial x_2^2} +$	$rac{\partial^2 u_3}{\partial x_3^2}$ -	$f_3 = 0$

solving partial derivative equations

breaking asymmetric cryptography keys

quantum computing usage categories

research

operations

manufacturing

telecoms

marketing

quantum & classical computing paradigms

classical computers		analog quantu	m computers	digital quantum computers			
quantum inspired	quantum emulators	quantum	analog	gate-based			
running on classical computer, inspired by quantum algorithms.	computers code on classical computers, for training, debugging and testing	annealing computers	quantum simulators	NISQ (Noisy Intermediate Scale Quantum) no error correction with a few noisy qubits	FTQC (Fault-Tolerant Quantum Computers) error correction and fault tolerance		
classical algorithms improvements	quantum algorithms debug and testing	optimization problems and quantum physics simulation		general purpose quantum computing, adds search and integer factoring			
	eviden <u>IEM</u>			IBM rigetti	Ψ PsiQuantum		
	FUJITSU Google		PASQAL	Google IQM	ALICE & BOB		
ZAPATA //AI	Microsoft		: •• •• i i •i •		Microsoft		
	QUANDELA C12			QUANDELA XANAC	U		

digital vs analog quantum computing

some mathematical **problem** with data inputs and desired output.

algorithm to solve the given problem, which are mostly hybrid and/or variational.

with analog quantum computing, the quantum part of the algorithm may map to a generic QUBO or Ising **model formulation.**

QUBO/Ising model may itself map to a generic problem formulation like **BQM** in the case of D-Wave annealers.

the reformulated problem is **directly solved** by the (analog) quantum computer, in an hybrid manner along with a classical computer.

main qubit types

QPUs vendors per qubit type

I

inside a typical quantum computer

for superconducting or electron spin qubits

inside a trapped ions QC

with a neutral atoms quantum computer

with a photon qubits quantum computer

key QPU challenges

qubits fidelities

errors mitigation and correction

(e)t type modularity involves microwave-to-optical transduction to link QPUs in different dilution refrigerators.

quantum interconnect

enabling technologies scalability

energy consumption

quantum memory

raw algorithm fidelities requirements

desired error rate $< \frac{1}{N \times D}$

N	D	required error rate (%)	required	available fidelity (%)
50	100	0.02000%	99.98%	99.30%
133	300	0.00251%	99.9975%	99.6%
433	1000	0.00023%	99.9998%	98%
1121	2000	0.00004%	99.99996%	N/A

but... QEC cost discrepancy between Clifford and non-Clifford gates

how to improve qubit fidelities? *

materials

manufacturing

tune qubit parameters

Cross-Cross Resonance Gate

Kentaro Heya1,2,* and Naoki Kanazawa1,†

¹IBM Quantum, IBM Research Tokyo, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan
²Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

 Yosep Kim,^{1,*} Alexis Morvan,¹ Long B. Nguyen,¹ Ravi K. Naik,^{1,2} Christian Jünger,¹ Larry Chen,² John Mark Kreikebaum,^{2,3} David I. Santiago,^{1,2} and Irfan Siddiqi^{1,2,3}
 ¹Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³Materials Science Division, Lawrence Berkeley Vational Laboratory, Berkeley, California 94720, USA (Dated: Deember 21 2022)

use different primary gates

improve control signals quality

logical qubits and FTQC

physical qubit

error rates ≈0.1%

logical qubit

error rate $<10^{-8}$ to $<10^{-15}$

error correction code

threshold, physical qubits overhead, connectivity requirements, syndrome decoding and scale

fault tolerance

avoid error propagation and amplification implement a universal gate set fault-tolerant results readout

tens to thousands qubits

existing logical qubits above break-even

Sycamore 72-qubit processor single distance-5 logical qubit – July 2022

it slightly outperforms a distance-3 logical qubit but with providing a higher error rate (2.1%) than the underlying physical qubits (0.7%).

Harvard-MIT-QuEra 48 logical qubits – December 2023

logical 2-qubit gate error rates at 7% with distance-7 surface code while physical qubit error rate is 0.5%.

Microsoft-Quantinuum logical qubits

Demonstration of logical qubits and repeated error correction with better-than-physical error rates

M. P. da Silva,¹ C. Ryan-Anderson,² J. M. Bello-Rivas,¹ A. Chernoguzov,² J. M. Dreiling,² C. Foltz,² J. P. Gaebler,² T. M. Gatterman,² D. Hayes,² N. Hewitt,² J. Johansen,² D. Lucchetti,² M. Mills,² S. A. Moses,² B. Neyenhuis,² A. Paz,¹ J. Pino,² P. Siegfried,² J. Strabley,² S. J. Wernli,¹ R. P. Stutz,² and K. M. Svore¹

¹Microsoft Azure Quantum ²Quantinuum (Dated: April 2, 2024)

The promise of quantum computers hinges on the ability to scale to large system sizes, e.g., to run quantum computations consisting of more than 100 million operations fault-tolerantly. This in turn requires suppressing errors to levels inversely proportional to the size of the computation. As a step towards this ambitious goal, we present experiments on a trapped-ion QCCD processor where, through the use of fault-tolerant encoding and error correction, we are able to suppress logical error rates to levels below the physical error rates. In particular, we entangled logical qubit states encoded in the [[7, 1, 3]] code with error rates 9.8× to 500× lower than at the physical level, and entangled logical qubit states encoded in a [[12, 2, 4]] code with error rates below thysical circuit baselines corresponding to repeated CNOTs, and show evidence that the error rate of two physical CNOTs. These results signify an important transition from noisy intermediate scale quantum computing to reliable quantum computing, and demonstrate advanced capabilities toward large-scale fault-tolerant quantum computing.

https://arxiv.org/abs/2404.02280

claim: logical qubit with x800 improvement vs physical qubit reality: x800 improvement only for the first gate cycle!

FIG. 7. Observed error rate for circuits with 1 to 3 rounds of error correction with the [[12, 2, 4]] Carbon code (green circles) and physical baselines (blue diamond for pairs of 1bit teleportations, and orange squares for pairs of CNOTs). Results are offset along the x-axis for clarity. Linear fits are obtained by maximum-likelihood estimation (see Appendix A for details).

Craig Gidney's comment on Scott Aaronson's blog

https://scottaaronson.blog/?p=7916#comment-1973425

qubits for FTQC?

dynamically adjusted against the algorithm size

logical qubits requirements

Li-Ion battery chemical simulation

needs...

6,652 logical qubits

10⁻¹² error rate

computing times in months/years

ΧΛΝΛΟυ

source: Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer by Alain Delgado et al. April-September 2022 (31 pages).

PHYSICAL REVIEW A 106, 032428 (2022)

Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer

Alain Delgado^{0,1,*} Pablo A, M, Casares^{0,2,*} Roberto dos Reis^{0,1,3} Moditaba Shokrian Zini,¹ Roberto Campos^{0,2,4} Norge Cruz-Hernández⁶,⁵ Arne-Christian Voigt,⁶ Angus Lowe,¹ Soran Jahangiri⁶,¹ M. A. Martin-Delgado⁶,^{2,7} Jonathan E. Mueller[®],⁶ and Juan Miguel Arrazola^{1,†} ¹Xanadu, Toronto, Ontario, M5G 2C8, Canada ²Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain ³Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA ⁴Ouasar Science Resources SL, 28231, Las Rozas de Madrid, Spain ⁵Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville, E-41011, Spain ⁶Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany ⁷CCS-Center for Computational Simulation, Universidad Politécnica de Madrid, 28040 Madrid, Spain

(Received 27 April 2022; revised 14 July 2022; accepted 10 August 2022; published 26 September 2022)

(cc) Olivier Ezratty, 2022-2024

Development Roadmap

Innovation Roadmap

Software Innovation	IBM 🛛 Quantum Experience	Qiskit Circuit and operator APE with compilation to multiple targets	Application modules Modules for domain specific application and algorithm workflows	Qiskit Runtime Performance and abstract through Primitives	Serverless Concepts of quantum centric- supercomputing	AI enhanced quantum Prototype demonstrations of AI enhanced circuit transpilation	Resource System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder			
Hardware Innovation	Early Canary Penguin 5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon Demonstrate scaling with I/Orouting with Bump bonds	Hummingbird Demonstrate scaling with multiploxing readout	Eagle Demonstrate scaling with MLW and TSV	Osprey Enabling scaling with high density signal delivery	Condor Single system scaling and fridge capacity	Flamingo Demonstrate scaling with modular connectors	Kookaburra Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gates	
 Executed by IBM On target @ 2024 IBM Corp 	poration					Heron Architecture based on tunable- cauplers	Crossbill 3 m-coupler					

IBM Quantum System 2 with three Heron 133-qubit QPUs

Unlocking True Commercial Advantage

Designing data center ready solutions at scale

		2024 Error Detection	2026 Error Correction	2028 Commercial Advantage	
Logical Performance		Dual-species crosstalk-free measurement	Logical circuit depth > 1,000 Universal quantum gate set	Logical circuit depth > 1 million.	
Logical Qubit	s	2	>10	>100	
Logical Oper	ations Rate		10,000/sec	100,000/sec	
Physical qub	its	1,600	8,000	40,000	
Fidelity	2Q (CZ): Local IQ: Global IQ:	99.50% 99.90% 99.99%	99.90% 99.95% 99.99%	99.95% 99.95% 99.99%	
Software		Tooling (QCVV) for verifying fault-tolerant properties	Optimized compilation of fault-tolerant circuits	Exponential speedup demonstration	
Enabling technologies		Optimized laser pulse modulation	Advanced photonic beam steering	Realtime atom reloading	

Error-Corrected Quantum Computing Roadmap

Harvard / QuEra logical qubits

source: Logical quantum processor based on reconfigurable atom arrays by Dolev Bluvstein, Mikhail D. Lukin et al, December 2023 (32 pages).

Public Roadmap

HONEYWELL QUANTUM SOLUTIONS GENERATIONAL ROADMAP

- 10 → 40 Qubits
- 2Q Fidelity: ≥99.5%
- All-to-all connectivity
- Conditional quantum logic
- Mid-circuit measurement
- Qubit reuse

- Massive scaling of physical qubits and computing power
- Ion trap fabrication in Honeywell's foundry
- Key enabling technologies already demonstrated for generational upgrades

key software challenges

data loading

tensor networks competition

actual speedups

benchmarking

actual computing time

coding abstraction level

potential quantum speedups

a matter of perspective

quantum advantages taxonomy

€\$£ TCO ROI

space

the qubit register data space - scaling in 2^N complex numbers with N qubits - exceeds the memory capacity of classical computers.

speed

a quantum algorithm, including its classical part, runs faster than an equivalent best-inclass classical algorithms running on either the largest supercomputers or a given HPC configuration.

quality

the quality of the results of a quantum algorithm is better for some respect than the best-in-class classical algorithms. e.g: an error rate of a machine learning classification, a chemical simulation accuracy, or a better combinatorial problem solution.

energetic

a fully-burdened quantum computer and algorithm configuration consumes less energy than the best-in-class classical equivalent.

cost

the total cost of the quantum solution is lower than the total cost of a best-inclass classical solution.

challenges ahead

- decoherence models
- noise models
- quantum control
- error correction codes
- cluster states creation
- qRAM
- QPU interconnect
- algorithms design
- complexity theory

- control electronics
- manufacturing quality
- cryogeny yield and power
- use cases
- software engineering
- emulators
- cloud infrastructure
- hybrid architectures
- benchmarking

- FPGA->ASIC
- VC, customer and governments investments
- fab investments other topics influences (LLMs, ...)

discussion

get the slides