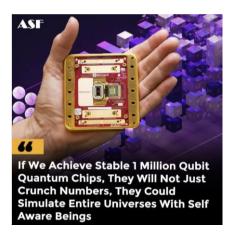


informatique quantique état de l'art, perspective et défis

Olivier Ezratty

(... | quantum engineer | QEI cofounder | ...)

olivier@oezratty.net www.oezratty.net @olivez


SFGP, Paris, 5 novembre 2025

L'USINEDIGITALE

Avec son algorithme Quantum Echoes, Google se rapproche d'applications réelles pour Julien Bergounhoux l'informatique quantique

22 octobre 2025 \ 17h00

Google annonce avoir mis au point le premier algorithme au monde à démontrer de façon vérifiable un avantage quantique. Baptisé Quantum Echoes, il permettrait de mesurer des distances très précisément à l'échelle moléculaire.

THE WALL STREET JOURNAL.

TECHNOLOGY

Nvidia Connects Quantum With AI

Nvidia isn't developing its own quantum computers, but Chief Executive Jensen Huang is betting the company will play a critical role in the technology's future.

Huang unveiled NVQLink an interconnect that links quantum processors to the AI supercomputers they need to run effectively during his Tuesday keynote at Nvidia's Washington, D.C., Global Technology Conference.

"NVQLink is the Rosetta Stone connecting quantum and classical supercomputers," he Ouantum processors repre-

sent a fundamentally new kind of computing that harnesses the principles of quantum physics to solve problems today's classical computers can't.

Jensen Huang calls the link the 'Rosetta Stone' connecting quantum and supercomputers.

different quantum modalities, including trapped ion, superconducting and photonic. The openness is critical, meaning national labs will be able to supercomputers primed to take advantage of quantum capabilities as they become available, Costa said.

Wednesd

In the future, "every super computer will draw on quantum processors to expand the problems that it can compute, and every quantum processor will rely on a supercomputer

to run correctly," Costa said. When can we expect to see meaningful commercial value from quantum? Costa said any answer he could give on that would probably end up being wrong

"You can do things like linearly extrapolate based on the technology progress over the

Quantum computing's market potential could be up to \$250B

Quantum computing applications

\$20B-\$40B

\$250B

BAIN & COMPANY (4)

What will the terminal valuation be of a quantum hardware company that succeeds to build a commercially useful quantum computer at scale?

You can see how people vote. Learn more

Greater than \$5T 30% \$1T 25% \$500B 20% \$100B 15%

Less than \$50M 10%

92 votes · 5d left · Hide results

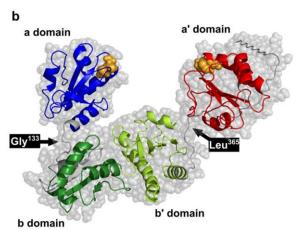
potential quantum computing benefits

computing faster than classical systems.

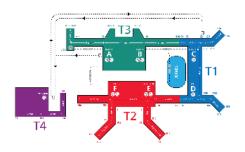
• solving problems inaccessible to classical computers.

 reducing required training data, particularly for machine learning tasks.

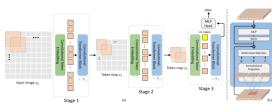
 improving results quality: chemical accuracy, better heuristics, etc.



- energetic advantage (NISQ).
- energetic acceptability (FTQC).

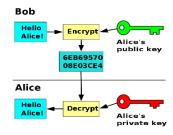

 usefulness: which depends on the stakeholder (fundamental research, governments, industry).

typical difficult problems



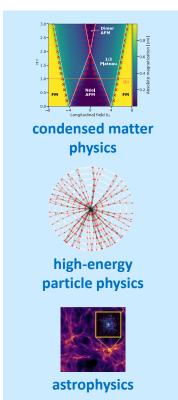
$$i\hbar\frac{\partial\Psi(x,t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V(x)\Psi(x,t)$$

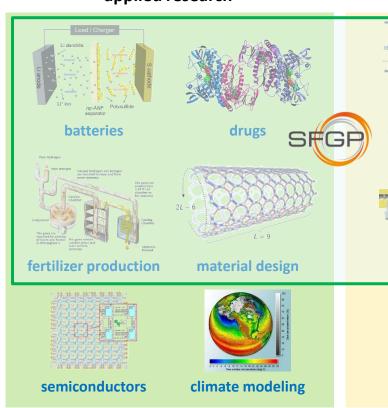
solving Schrodinger's wave equation to simulate quantum systems


combinatorial optimizations

machine learning and deep learning

solving partial differential equations

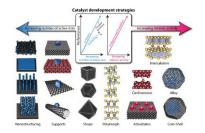

breaking asymmetric cryptography keys

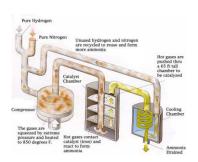

from science to industry applications

fundamental research

applied research

business operations

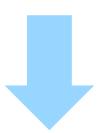

process engineering applications


chemical process engineering

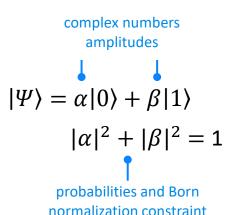
modelize chemical reactions, and complete molecular pathways

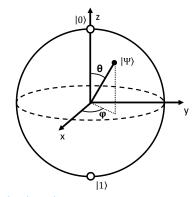
- ground state simulations.
- excited states simulations.
- virtual spectrography.
- chemical pathways simulations.
- molecular docking simulations.
- new catalyser simulations.
- corrosion simulations.
- new materials simulations.
- battery chemical simulations.

• ..

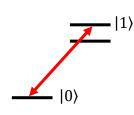

process systems engineering

modelization, optimization and control of complex processes

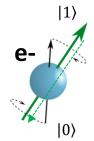

- combinatorial optimizations under constraints.
- solving decision problems.
- machine learning based optimizations.
- LLM-based process designs.
- process flow optimizations.
- job shop problem solving.
- cable routing optimization problem solving.
- ...

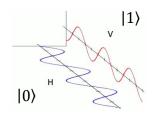

basic unit of quantum information

vector in a 2-dimension complex numbers Hilbert space

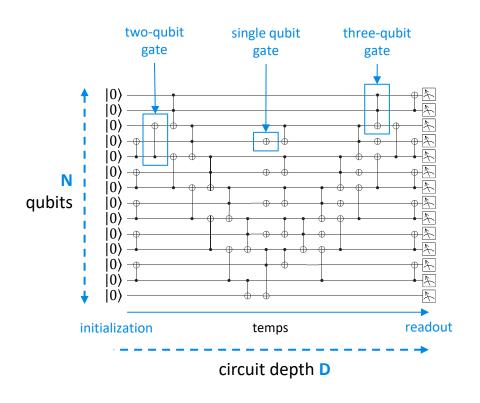


two-level state controllable quantum object




Bloch sphere representation with amplitude and phase

separable atom energy level



electron or nucleus spin projection

photon mode (polarization, number, frequency)

what is a quantum algorithm?

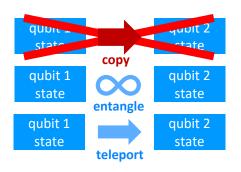
quantum algorithm: decomposes a solution to solve some mathematical problem into a quantum circuit.

quantum circuit: series of operations (gates) acting on a quantum memory, on individual qubits (superposition) or with connecting them together (entanglement).

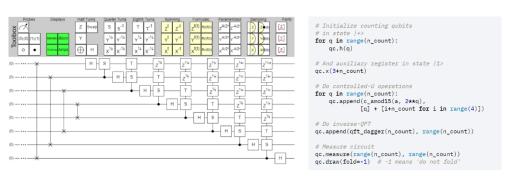
matrix computing: operating on a memory space of dimension 2^{N+1} real numbers.

mechanism: exploit various techniques like interferences to yield a value of interest in a series of classical bits.

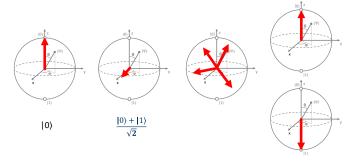
classical computing: used to prepare the circuit, encore data, and extract useful result from multiple circuit runs.


key differences vs classical computing

$$\langle \Psi_1 | \Psi_2 \rangle = \left[\overline{\alpha_1}, \overline{\beta_1} \right] \times \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} = \overline{\alpha_1} \alpha_2 + \overline{\beta_1} \beta_2$$


$$|\Psi_2\rangle\langle\Psi_1| = \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \mathbf{x} [\overline{\alpha_1}, \overline{\beta_1}] = \begin{bmatrix} \alpha_2 \overline{\alpha_1} & \alpha_2 \overline{\beta_1} \\ \beta_2 \overline{\alpha_1} & \beta_2 \overline{\beta_1} \end{bmatrix}$$

$$|\psi_1\rangle = \frac{1}{\sqrt{N}} \left(\sum_{j=1}^n \left(|0\rangle + e^{-2\pi i \left(\sum_{k=n-j}^n x_k 2^{-k}\right)} |1\rangle \right)$$


need to (re-)learn linear algebra

uncopiable data, but transferable

visual or Python scripted « circuits » programming

probabilistic results, and repeated computing to generate a deterministic outcome

from Hamiltonians to values of interest

problem Hamiltonians

$$H = \sum_{\langle i,j
angle} \left(J_x S_i^x S_j^x + J_y S_i^y S_j^y + J_z S_i^z S_j^z
ight) + \sum_i h_i S_i^z$$

$$H=\sum_{p,q}h_{pq}a_p^{\dagger}a_q+rac{1}{2}\sum_{p,q,r,s}g_{pqrs}a_p^{\dagger}a_q^{\dagger}a_ra_s$$

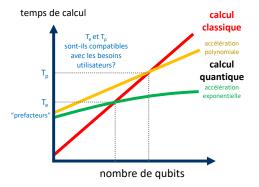
$$H = -t \sum_{\langle i,j
angle,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + ext{h.c.}
ight) + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

$$H = \frac{1}{2} \sum_{i \neq j} J_{ij}^x (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + J_{ij}^z \sigma_i^z \sigma_j^z$$

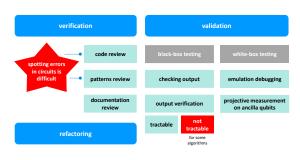
$$H = \sum_i h_i \sigma_i^z + \sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z$$

gate based QPU

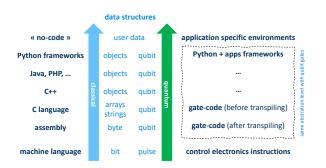
- problem decomposition.
- unitary approximation.
- circuit synthesis.


analog QPU

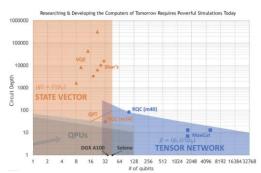
- problem embedding in a graph.
- QPU will search for an energy minimum.


"small data"

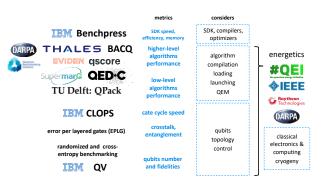
- ground state energy.
- excited states energies.
- other Hamiltonian eigenvalues.
- spectrography data.
- · index value.
- • •


software challenges

x → f(x) oracle based algorithms uniform superposition function aka Hadamard-Walsh Transform amplitude amplification data access encoding +-/x log cos arithmetic A sin tan encoding multiple shots ampling and classical post-processing Shor... algorithms encoding QFT, QSVT... patterns



algorithms and speedups


abstraction level

data loading

tensor networks competition

software engineering

benchmarking

quantum speedup origin

space advantage

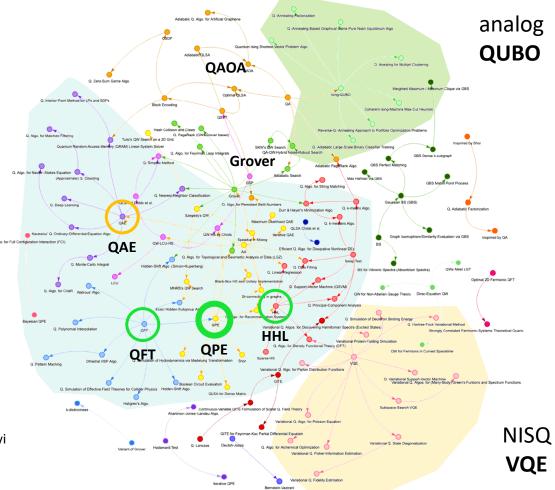
comes from N qubits handling the equivalent of 2^{N+1} floating point numbers

space/time trade-offs

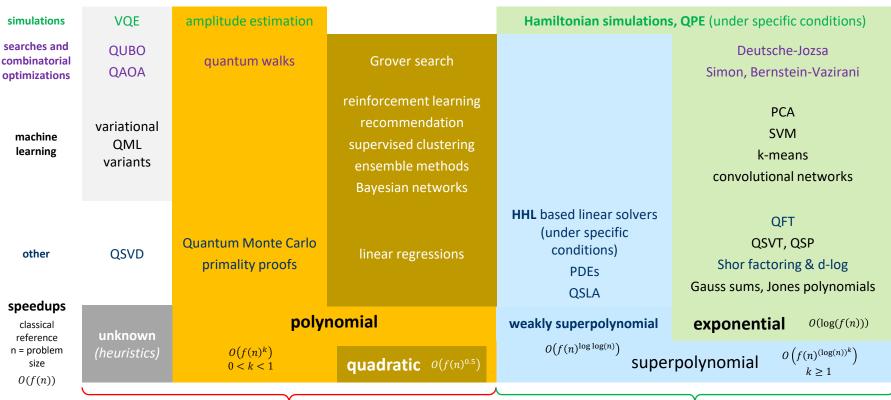
one can be improved at the expense of the other, like in classical computing

time advantage

when the number of gates cycles scales slower than with equivalent classical algorithms

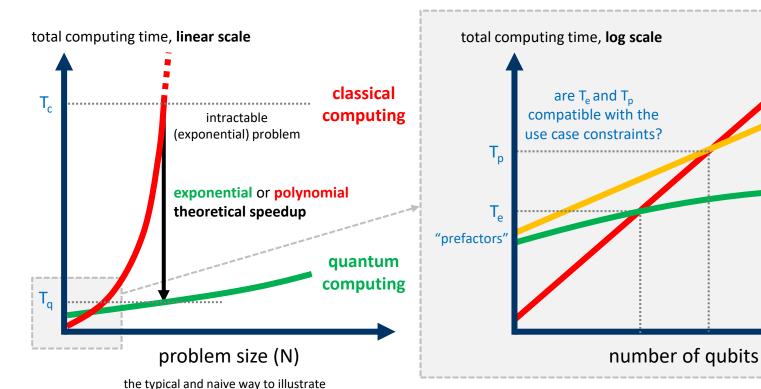

- 1. quantum computing is a form of in-memory processing.
- 2. exploiting engineered **interference** of amplitudes.
- 3. using arbitrary **analog evolutions** in the Hilbert space.
- 1. \rightarrow code compilation is a variable cost vs input data.

main known quantum algorithms


FTQC **QPE & QFT based**

Ínría C

A typology of quantum algorithms by Pablo Arnault, Pablo Arrighi, Steven Herbert, Evi Kasnetsi, and Tianyi Li, Inria, Quantinuum, arXiv, July 2024 (60 pages).



potential quantum speedups

Understanding Quantum Technologies by Olivier Ezratty, as of April 2025

theoretical vs practical speedups

quantum computing theoretical speedups.

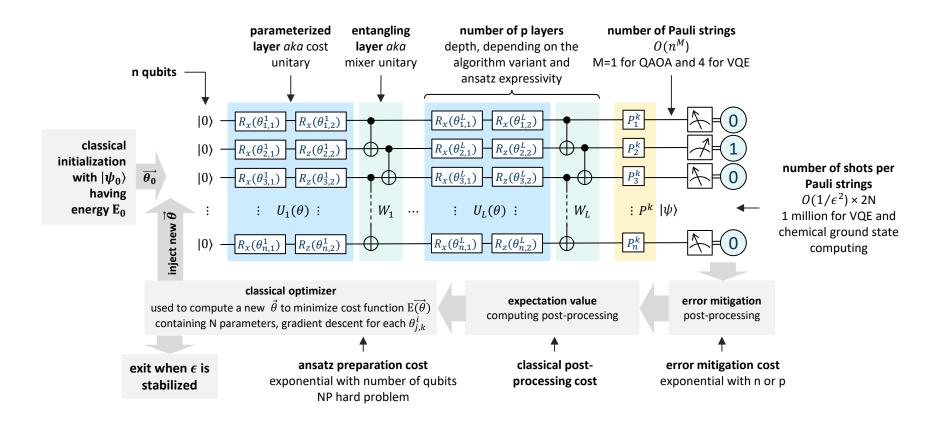
inspired by Opening the Black Box inside Grover's Algorithm

by E. Miles Stoudenmire and Xavier Waintal, PRX, November 2024.

(*) for a fair comparison, the classical computer can be as expensive and/or energy hungry as the QPU.

classical

computing (*)


polynomial

speedup

quantum computing exponential

speedup

NISQ variational quantum algorithms

variational algorithms barren plateaus

source: Zoë Holmes, EPFL, presentation to the FTQC group from the French Academy of Technology, October 14th, 2025.

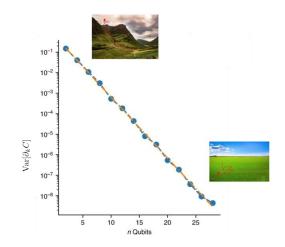
Small gradients

 high precision required to find loss minimizing direction

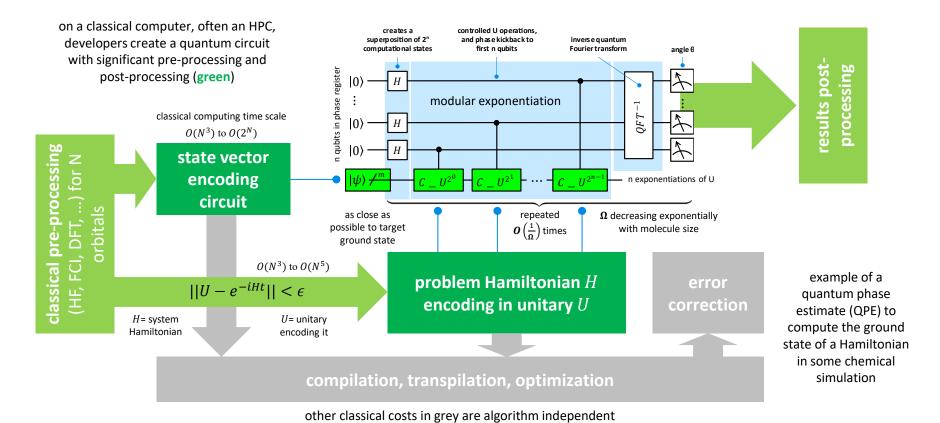
resource intensive

($\sim 1/\sigma^2$ shots are required estimate a loss to precision σ)

Barren plateau (BP) phenomena:


$$\frac{\operatorname{Var}[\partial_k C] \sim \frac{1}{2^n}}{+}$$

$$P(|\partial_k C| \ge \delta) \le \frac{\operatorname{Var}[\partial_k C]}{\delta^2}$$


Probability of non-zero gradients vanishes exponentially with problem size.

.

Shot required for training grows exponentially with problem size.

all quantum algorithms are hybrid

AI & quantum computing

As international competition escalates, a new white paper published today calls on the EU to invest in combining quantum computing and artificial intelligence to generate economic benefits and strengthen Europe's position as a prominent global player in emerging deep technologies.

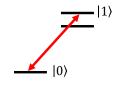
Published today by a group of interdisciplinary scientists and global industry experts, the new paper shows that for Europe to remain competitive and at the cutting edge of deep-tech innovation, it must actively fund the convergence of Al and quantum computing.

Called "Artificial Intelligence and Quantum Computing White Paper", the new paper highlights the need for a carefully orchestrated funding strategy that spans fundamental research, talent cultivation, and technology transfer incentives to ensure a robust pathway from visionary lab-scale projects to

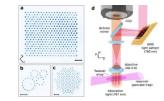
https://arxiv.org/abs/2505.23860

Quantum computing and artificial intelligence: status and perspective

Giovanni Acampora, ¹ Andris Ambainis, ² Leonardo Banchi, ^{3,4} Pallavi Bhardwaj, ⁵ Daniele Binosi, ^{6,7} Tommaso Calarco, ^{6,8} Vedran Dunjko, ⁹ Jens Eisert, ¹⁰ Olivier Ezratty, ^{11,12} Paul Erker, ^{13,14} Elies Gil-Fuster, ^{10,15} Martin Gärttner, ¹⁶ Mats Granath, ¹⁷ Anton Frisk Kockum, ¹⁸ Iordanis Kerenidis, ¹⁹ Martihas Klusch, ²⁰ Richard Kueng, ²¹ Mario Krenn, ²² Antonio Macaluso, ²⁰ Sabrina Maniscalco, ²³ Kristel Michielsen, ⁸ Gorka Muñoz-Gil, ²⁴ Hendrik Poulsen Nautrup, ²⁴ Roman Orus, ²⁵ Jörg Schmiedmayer, ¹³ Philipp Slusallek, ^{26,29} and Frank K. Wilhelm^{26,8}

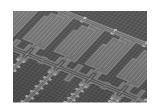

¹University of Naples Federico II, I-80126 Naples, Italy ²Center for Quantum Computer Science, Faculty of Computing, University of Latvia, LV-1586 Riga, Latvia Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino (FI), Italy ⁴INFN Sezione di Firenze, 1-50019, Sesto Fiorentino (FI), Italy ⁵SAP SE, Walldorf, Germany 6 Quantum Community Network ⁷European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Fondazione Bruno Kessler), I-38123 Villazzano (TN), Italy ⁸Forschungszentrum Jülich, D-52428 Jülich, Germany ⁹Leiden Institute of Advanced Computer Science, N-2333 Leiden, Netherlands ¹⁰Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin, Germany 11 EPITA Research Lab 12 Quantum Energy Initiative ¹³ Vienna Center for Quantum Science and Technology, Atominstitut, TU-Wien, A-1020 Vienna, Austria ¹⁴IQOQI Vienna, ÖAW , A-1090 Vienna, Austria ¹⁵Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany ¹⁶Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, D-07743 Jena, Germany ¹⁷Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden ¹⁸Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden ¹⁹Université Paris Diderot, F-75013 Paris, France ²⁰German Research Center for Artificial Intelligence (DFKI), D-66123 Saarbrücken, Germany ²¹Johannes Kepler University Linz, A-4040 Linz, Austria ²²Max Planck Institute for the Science of Light, Erlangen, Germany ²³University of Turku, FI-20014 Turun vliopisto, Finland ²⁴University of Innsbruck, A-6020 Innsbruck, Austria

> ²⁵Donostia International Physics Center, E-20018 Donostia, Spain ²⁶Saarland University, D-66123 Saarbrücken, Germany (Dated: April 22, 2025)

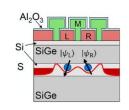

Contents 3. Quantum physics 15 IV. AI for quantum A. Discovery and optimization of quantum I. Executive summary B. Simulation of quantum systems II. Introduction C. Analysis of quantum data III. Ouantum for AI D. Automated control and calibration of quantum A. Quantum-assisted machine learning technologies 1. Supervised learning E. Trustful, robust, interpretable, and explainable AI 2. Reinforcement learning for quantum technologies 3. Unsupervised learning F. Quantum error mitigation via post-processing by B. Research directions 1. Learning models G. AI for Ouantum error correction 2. Quantum artificial intelligence for algorithmic H. Quantum architecture search with machine discovery learning for near-term algorithms 3. Quantum data pre-processing 20 4. Quantum optimization V. Foundational questions 5. Quantum reasoning 11 A. Physics and (quantum) machine learning 20 6. Quantum algorithms for multi-agent systems 12 1. Toward general AI 20 C. Use cases and applications 13 2. Safe AI: robustness, alignment, etc 20 1. Healthcare and life sciences 13 3. Quantum AI 21 2. Industry 14 B. Machine learning and AI in a quantum world

main qubit types

atoms and ions


atom energy level

superconducting


anharmonic oscillator current phase and energy


electron spins

electron spin orientation

photons

photon polarization, or other property

quantum states

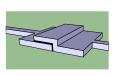
physical aspect

how qubits are controlled?

	atoms		electrons controlled spin and microwave cavities				photons
	trapped ions	cold atoms	superconducting	Sige \(\psi_1\) \(\psi_2\) \(\psi_3\) \(\psi_1\) \(\psi_2\) \(\psi_3\) \(\psi_1\) \(\psi_2\) \(\psi_3\) \(\psi_3\)	vacancies	topological	photons
initialization	optical or electromagnetic tweezers		microwave pulses		optical	DC current	single photon sources and polarizers
quantum gates	laser pulses microwaves RF signals		microwave pulses and/or DC current		optical and/or microwaves	microwave reflectometry and quadrature analysis	interferometers, polarizing beam splitters,
readout	laser and CCD detected fluorescence		microwave reflectometry and quadrature analysis		laser and CCD detected fluorescence		single photon detectors
	optical photons microwave photons other signals						

>80 QPUs industry vendors!

atoms



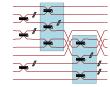
electrons controlled spin and microwave cavities

annealing

superconducting

EeroQ C12

,\RCHER

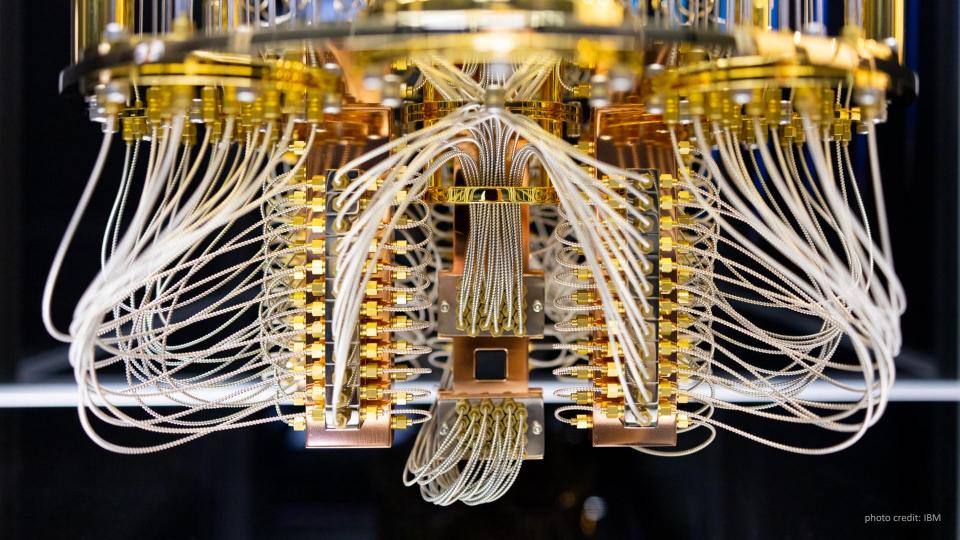

topological

Microsoft

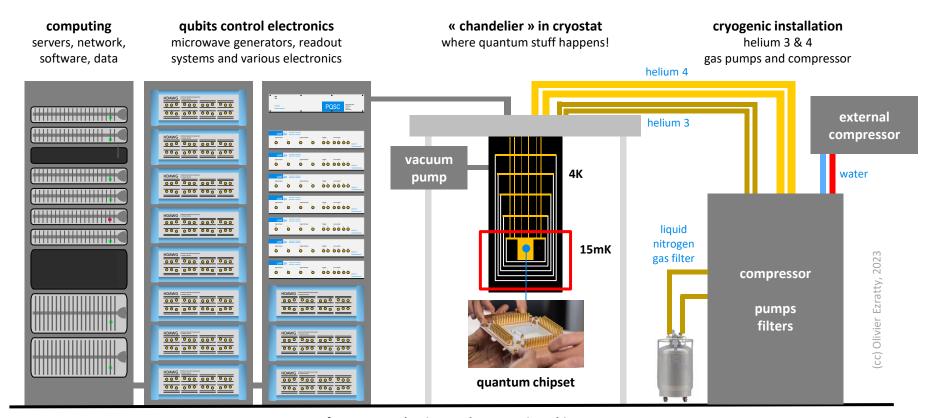
QUOHERENT

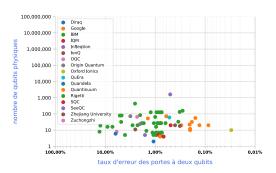
QUANTUM

NOSIA

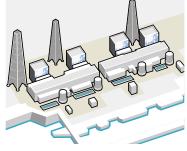


photons

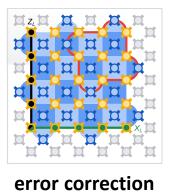

photons



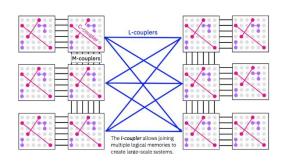
inside a typical quantum computer



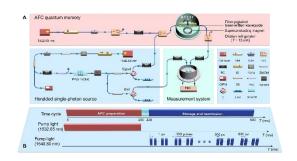
hardware challenges



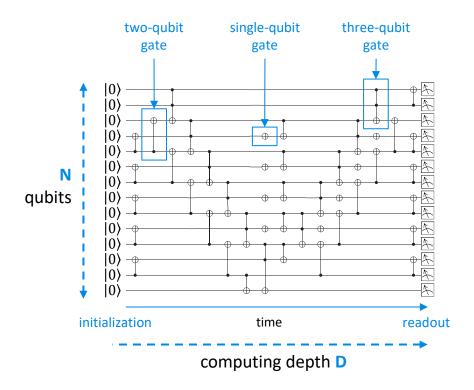
control signals multiplessing?


the quantum energy initiative

qubit quality



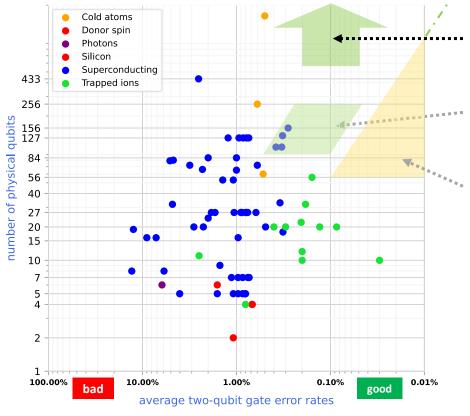
electronics, cabling, cryogeny


interconnection

cost and power/energy

quantum memory

algorithm fidelities requirements



desired error rate $< \frac{1}{N \times D}$

e.g. 10 qubits \times 100 gate cycles = 1000 => 99.9% fidelity 100 qubits \times 100 gate cycles = 10K => 99.99% fidelity

each operation in blue adds errors that accumulates during computing and damage results quality, but idle operations also add errors.

the qubit fidelities challenge

route to FTQC, requiring a large number of quality qubits

quantum error mitigation NISQ utility window

viable NISQ zone in a quantum advantage regime without QEM (hard to obtain)

nature

Article

 $Observation \, of \, constructive \, interference \, at \, the \, edge \, of \, quantum \, ergo \, dicity$

Internation 10 National 10 Nat

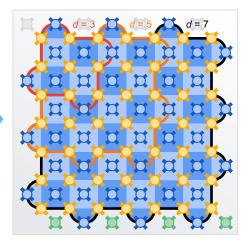
what can be done here?

- understanding and optimizing qubit operations and readout.
- many qubit-type specific optimizations.
- improving manufacturing processes for quantum chips.
- faster chips design-to-test cycles.
- autonomous error corrections (e.g. cat-qubits).

logical qubits and FTQC

physical qubit

error rates ≈0.1%

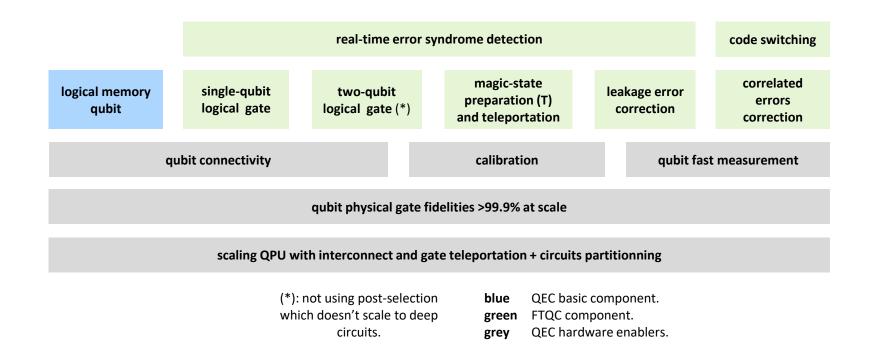

+

error correction code

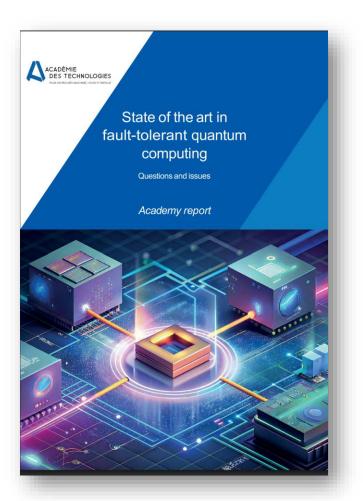
threshold, physical qubits overhead, connectivity requirements, syndrome decoding and scale

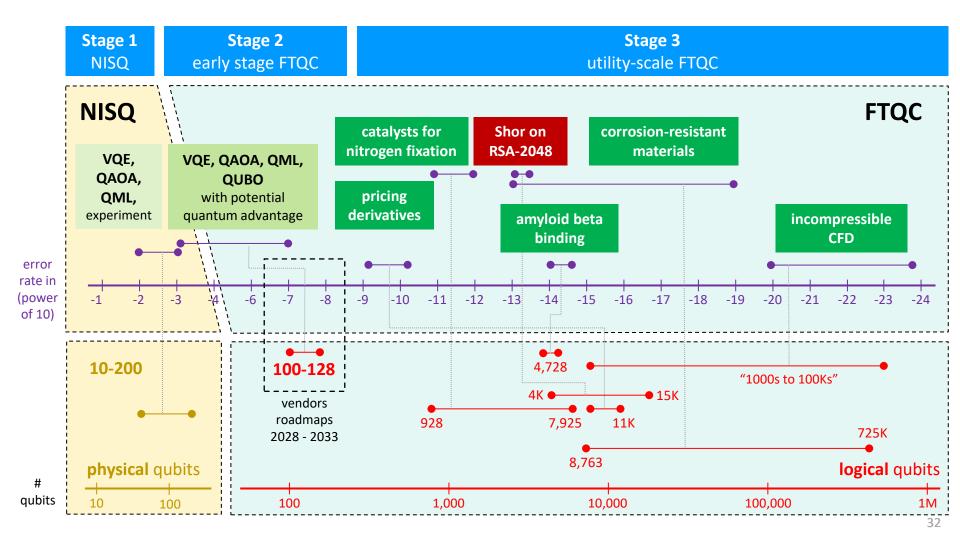
logical qubits

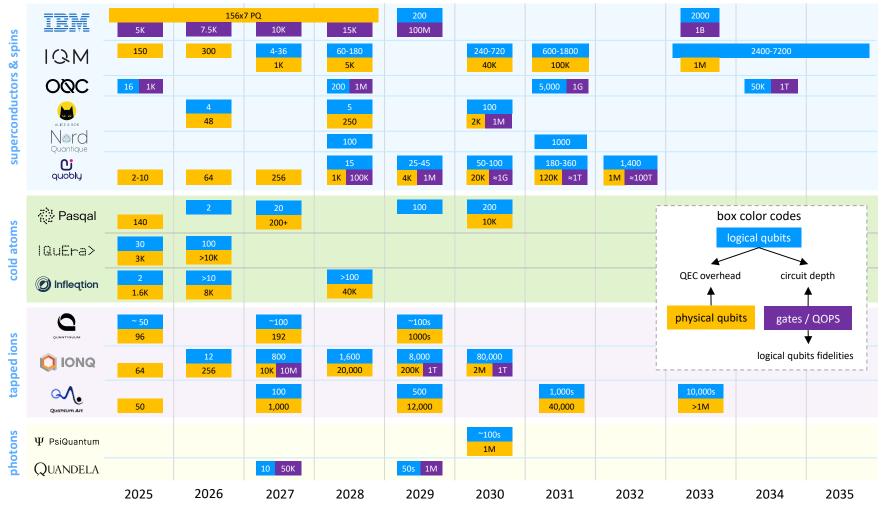
error rate $\approx 10^{-4}$ to $\approx 10^{-18}$


tens to thousands physical qubits per logical qubits

fault tolerance (FTQC)


- implement logical gate correction.
- avoid error propagation and amplification.
- implement a universal gate set.
- fault-tolerant results readout.
- correct correlated errors.




QEC/FTQC key components

hybrid

computing

centers

OVHcloud

Qiskit on

your own

hardware

34-50 qubits

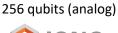
40 qubits

emulation

JÜLICH JÜLICH SUPERCOMF

LUMI

CINECA


100 qubits (analog)

QUANDELA

84 qubits

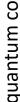
30 qubits

100 qubits (analog)

25-32 qubits

84 qubits

20 qubits



(cc) Olivier Ezratty, 2025

why

- ICT energy consumption is growing in an uncontrolled way.
- energetics are usually an afterthought, like with LLMs.
- it's time to work on this as quantum technologies are being designed.

PRX QUANTUM 3, 020101 (2022)

Quantum Technologies Need a Quantum Energy Initiative

Alexia Auffèves

Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France

(Received 18 November 2021; revised 11 April 2022; published 1 June 2022)

Quantum technologies are currently the object of high expectations from governments and private companies, as they hold the promise to shape safer and faster ways to extract, exchange, and treat information. However, despite its major potential impact for industry and society, the question of their energetic footprint has remained in a blind spot of current deployment strategies. In this Perspective, I argue that quantum technologies must urgently plan for the creation and structuration of a transverse quantum energy initiative, connecting quantum thermodynamics, quantum information science, quantum physics, and engineering. Such an initiative is the only path towards energy-efficient, sustainable quantum technologies, and to possibly bring out an energetic quantum advantage.

what

- build new science and engineering.
- create full-stack methodologies to evaluate, optimize, and benchmark QT energy consumption.

where

- academic and industry QEI workshops: Singapore (2023), Grenoble (2025), Barcelona (2026).
- APS 2025, ICQE 2025, France Singapore Symposium (Paris, 2025), Q2B Paris and Santa Clara (2025).
- online seminars, website.

4 cofounders.

QUANDELA Quobly

500+ community in >90 countries.

>30 industry and academic partners.

IQM

- 14 scientific board members.

how

first methodology (2023)

PRX OUANTUM 4, 040319 (2023)

Optimizing Resource Efficiencies for Scalable Full-Stack Quantum Computers

Marco Fellous-Asianio, 1.2, Jing Hao Chai, 2.3, Yvain Thonnarto, Hui Khoon Ng, 6.3, 7, Robert S, Whitneyo, 8, and Alexia Auffèves 2.3, 7, §

Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c,
Warsaw 02-097, Poland

² Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France ³ Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore ⁴ Entronica Labs. 1886 Telok Aver Street. 068632 Sinvanore

⁵ Université Grenoble Alpes, French Alternative Energies and Atomic Energy Commission (CEA)—Laboratory for Integration of Systems and Technology (LIST), Grenoble F-38000, France

⁶ Yale-National University of Singapore (NUS) College, Singapore

⁷ MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Laboratory, Singapore ⁸ Université Grenoble Alpes, CNRS, Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC), Grenoble 38000, France

(Received 29 November 2022; accepted 31 July 2023; published 30 October 2023)

Working Group (2023-*)

BACQ benchmarking project (2023-*)

BACQ - Application-oriented Benchmarks for Quantum Computing

Delivering an application-oriented benchmark suite for objective multi-criteria evaluation of quantum computing performance, a key to industrial uses

OECQ flagship project with EDF, Quandela, Alice&Bob, and CNRS (2023-*)

Accueil > Actualité

Lancement du projet "Optimisation Énergétique des Circuits Quantiques", avec le CNRS, EDF, Quandela et Alice & Bob

25 septembre 2024

INNOVATION

FTQC energetics paper (in preparation).

The energetic challenges of fault-tolerant quantum computing

Marco Fellous-Asiani, ¹ Pierre-Emmanuel Emeriau, ² Jeremy Stevens, ³ Marco Pezzutto, ^{4,5,6} Yasser Omar, ^{4,5,6} and Olivier Ezratty, ^{7,8,*}

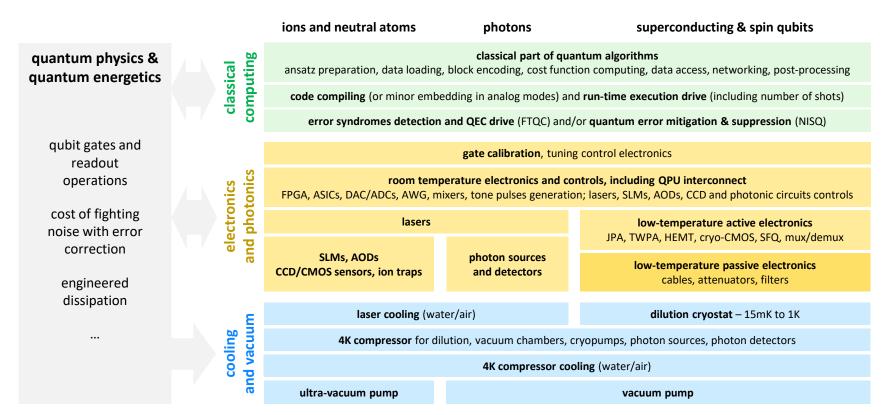
¹Inria ²Quandela ³Alice&Bob

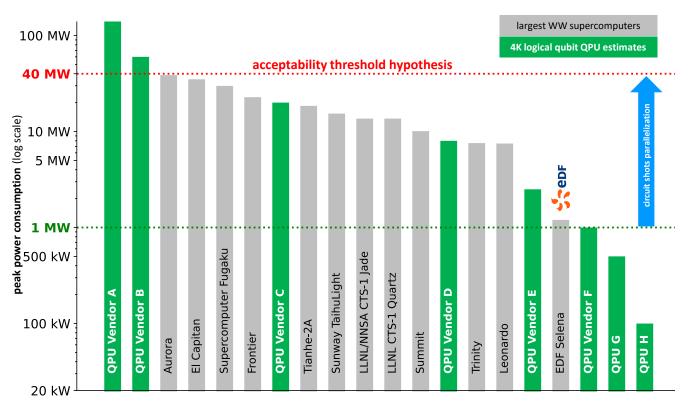
⁴Instituto Superior Técnico, Universidade de Lisboa, Portugal ⁵PQI – Portuguese Quantum Institute, Portugal

⁶Physics of Information and Quantum Technologies Group, Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Portugal

⁸Quantum Energy Initiative

putting quantum technologies energetic in the EU Quantum Strategy agenda (ongoing).




QEI roadmap (in preparation).

full-stack energetic costs decomposition

estimate power baselines, and then look for reductionist + holistic energetic optimizations

QPU vs HPC power scale guesstimates

https://www.youtube.com/watch?v=rUcPLZeZxG0&t=3048s

(cc) Olivier Ezratty, 2025.

estimate base power for various QPUs and actual for existing largest HPCs WW. HPC source: https://www.top500.org/lists/top500/2024/06/. QPU sources: official and unofficial vendor data.

QPU energetics knowns and unknowns

knowns

- need to better understand the energetics of qubits operations.
- an energetic advantage could appear before a computational one.
- 1-to-1,000 QPU power consumption ratios guesstimates.
- agreeing on how to measure QPU energetics and power is key.
- benchmarking QPU energetics is a new discipline to create.
- reductionist and holistic energetic optimizations will be needed.
- some optimizations will be at the system level, and other will be applications dependent.

known unknowns

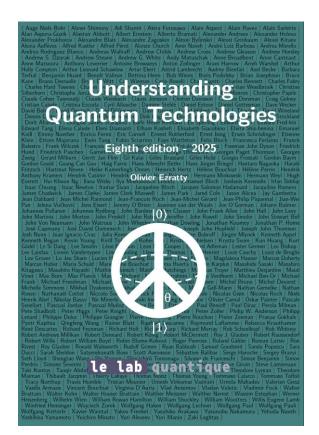
- correlation or anticorrelation between power estimates and technology viability: will only the fittest survive?
- total cost and scale of classical computing driving QPUs.
- QPU interconnect energetics.
- useful algorithms, particularly for business operations.
- error correction advances.
- will quantum noise be contained at scale?
- QPU total carbon footprint.
- QPU business value across verticals.
- market size and externalities.
- global QPU energy consumption sizing.
- will energetics become a key vendor differentiation factor?
- on-premise vs cloud usage?

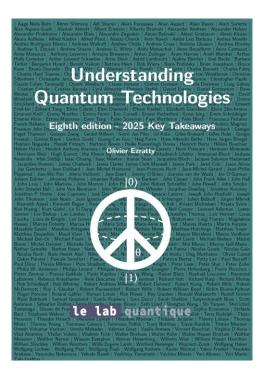
unknown unknowns

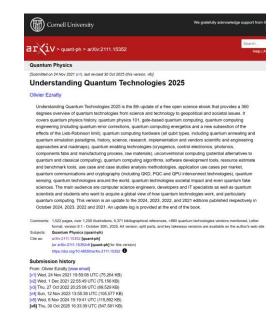
- quantum noise at large scale.
- Lieb-Robinson limit effects in large physical scale distributed QPUs.
- can quantum algorithms progress change the energetic landscape?
- ...

economics

industry vendors ecosystem







2025, 1,522 pages free PDF download

2025, 36 pages free PDF download

discussion

get the slides!