DA VINCI DIALOGUES SÉMINAIRE DEEP TECH

9-10 AVRIL 2024

S

CHÂTEAU LOUISE DE LA VALLIÈRE REUGNY, INDRE-ET-LOIRE

LES TECHNOLOGIES QUANTIQUES AU SERVICE DE LA SANTÉ

Olivier Ezratty

les technologies quantiques au service de la santé

olivier ezratty

{ auteur | ... }
Tours, 10 avril 2024
olivier@oezratty.net www.oezratty.net @olivez

quantum sensors

• less invasive imaging (MRI, MEG) and better precision biological sensors (NV centers).

drugs discovery

- DNA sequence alignment.
- de novo DNA sequence.
- protein folding and interactions with ligands.
- force field and electronic structure computation.
- screening and generation of molecular entities as drug candidates.
- drug retargeting.

diagnostics

- medical images classification and reconstruction.
- disease assessement based on genomic samples.
- clinical data classification and analysis.
- disease risk prediction.
- clustering of similar individuals.

treatments

- persistence and healthrelated behavior prediction.
- treatment and intervention effectiveness forecasting.
- disease outbreak prediction and spread modeling.
- precision oncology.
- tailored radiotherapy.
- hospital capacities optimization.

simulating nature

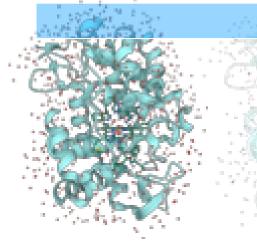
• chemical simulations.

data processing

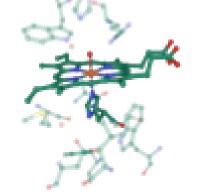
- images and structured data.
- quantum machine learning.

search and optimizations

• various datasets.


fasten drug discovery

		Discovery research arget identification			
4-5 years 10 ⁶⁰ of possible		Hit identification	10 000	moleculesDockingVirtual screening	
molecules 10s of parameters		Hit to lead		Pharmacohore mappingDe novo designQSAR	this part could potentially be accelerated thanks to quantum computing
to be optimised 1000s of compounds to be synthesised	s [_ead optimisation	200 molecules	 Molecular dynamics Quantum mechanics Enhanced sampling 	
6- yea	-	Drug candidate Developement	5 molecules		
	L-2 ears	Registration	1 molecule		


Source: Drug design on quantum computers by Raffaele Santagati, Alan Aspuru-Guzik, Nathan Wiebe et al, January 2023 (9 pages)

common electronic structure methods employed on classical computers

commonly used quantum chemistry methods to solve the electronic structure problem. In the left column, we zoom in on the Compound I intermediate of Cytochrome c Peroxidase (PDB ID: 1ZBZ [71{73]}).

accuracy increases as molecule are smaller

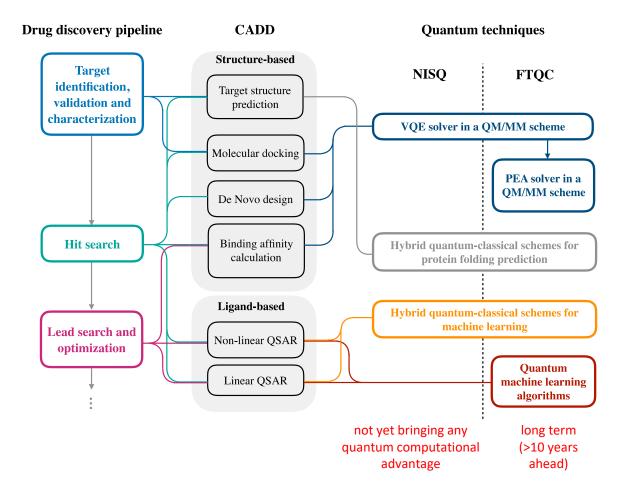
Cytochrome in solution

Force Fields/ Semi-empirical Methods Methods that cannot fully describe quantum mechanical effects but can be tuned with information from quantum methods.

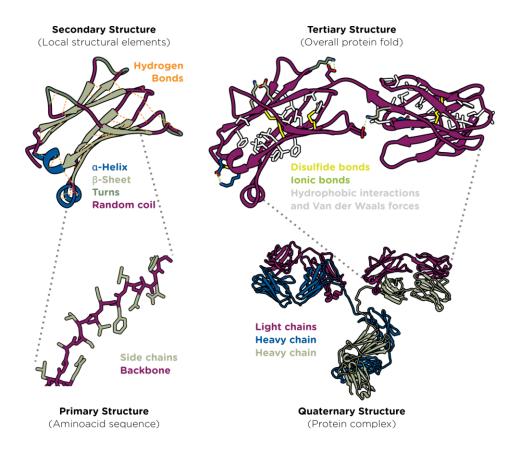
Cytochrome binding site

Hartree-Fock/Density Functional Theory (DFT)

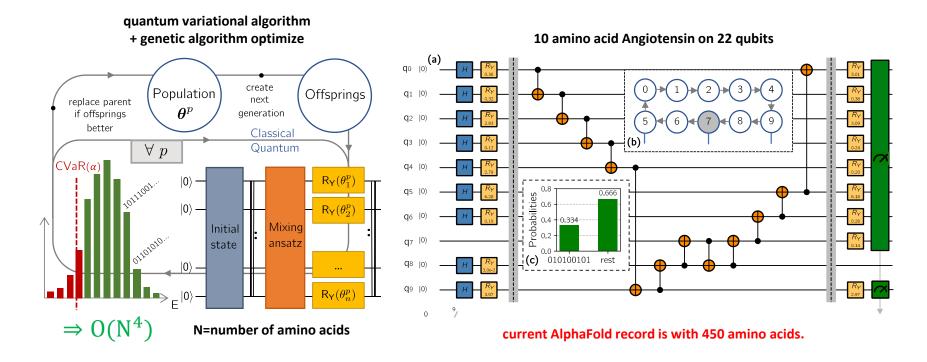
Mean-field methods treat electrons in the presence of the average potential of the other electrons. DFT includes electronic correlation, while Hartree-Fock does not.

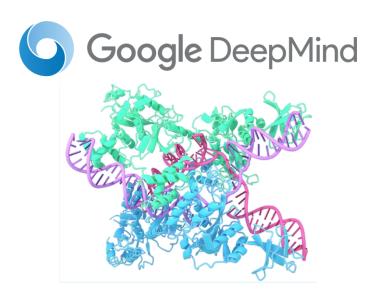

Cytochrome heme site

Coupled-Cluster (CC) Cluster wavefunction methods that expand around a single meanfield reference.

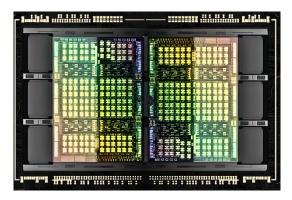

Cytochrome iron cluster

Full Configuration Interaction (FCI)


Method that delivers the exact energy of the electronic structure problem within a finite basis set.

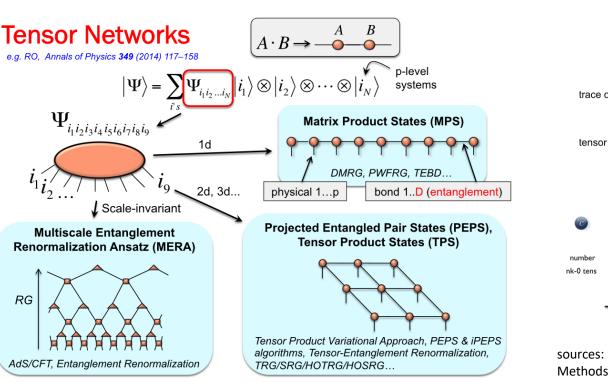

protein folding requirements

quantum-based protein folding simulation

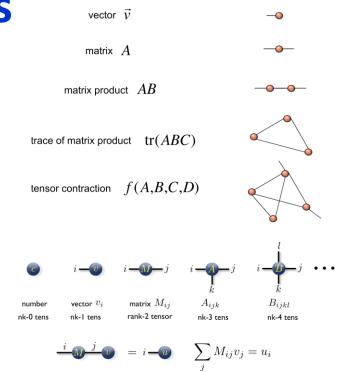


source: Resource-efficient quantum algorithm for protein folding, Anton Robert et al, 2020.

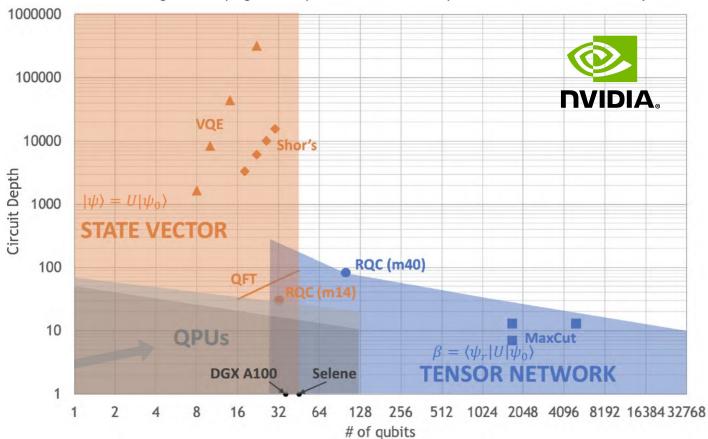
AlphaFold 3 can now generate predictions for nearly all molecules in the Protein Data Bank (PDB), frequently reaching atomic accuracy



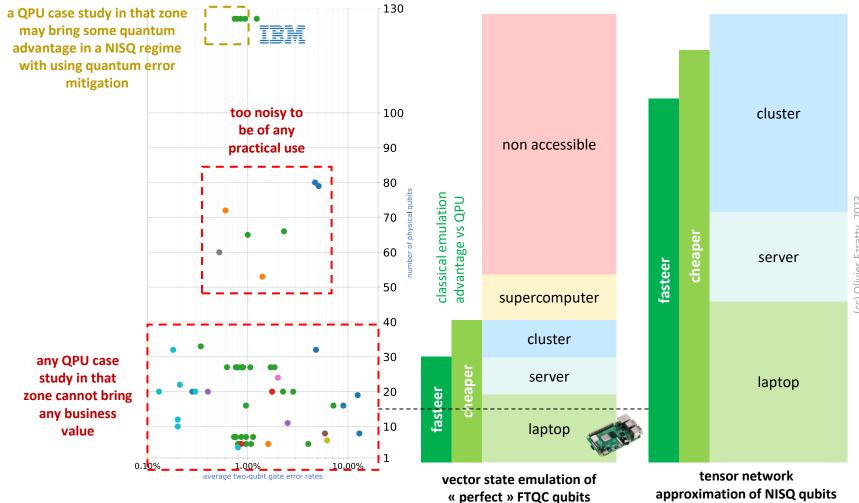
Blackwell GPU with 200 billion transistors and DGX B200 with 8 B200, 144 petaFLOPS inference workloads.


Source: A glimpse of the next generation of AlphaFold, Google DeepMind AlphaFold team and Isomorphic Labs team, October 2023.

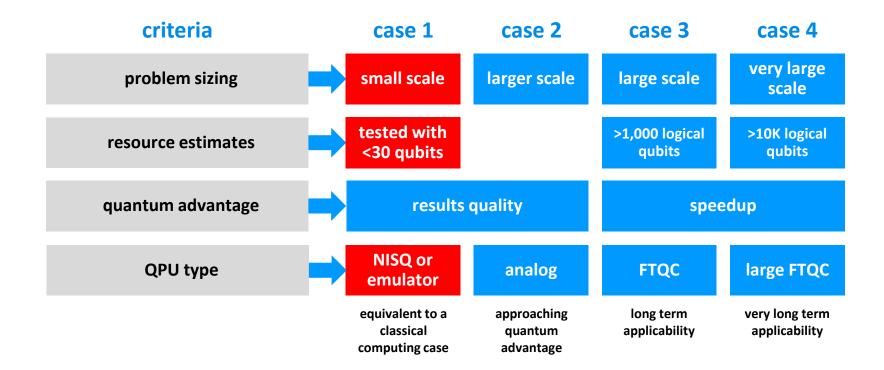
tensor network techniques



Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians


RG

sources: Introduction to Tensor Network States and Methods by Román Orús, DIPC & Multiverse Computing, 2020 (229 slides) and Lecture 1: tensor network states by Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam (56 slides).



Researching & Developing the Computers of Tomorrow Requires Powerful Simulations Today

(cc) Olivier Ezratty, 2023

assessing QC case studies

understanding « case studies »

Quantum algorithm for bioinformatics to compute the similarity between proteins February 2024

Anthony Chagneau 1, Yousra Massaoudi 2, Imene Derbali 2, and Linda Yahiaoui 2

¹Expleo Group, Agence Méditerranée, 2 Impasse de Chasles, Z.A Cap Horizon, Vitrolles, 13127, France ²Expleo Group, 21 Rue André Lwoff, Saint-Priest, 69800, France

Quantum Support Vector Machine for Prostate Cancer Detection: A Performance Analysis

W. El Maouaki^{*1}, T. SAID¹, and M. BENNAI^{1,2}

¹Quantum Physics and Magnetism Team, LPMC, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco ²Lab of High Energy Physics, Modeling and Simulations, Faculty of Sciences, University Mohammed V-Agdal, Rabat, Morocco

March 2024

• QAOA algorithm on a 5 noisy IBM QPU qubits.

• 50 amino acid string generation.

 "Quantum Needleman-Wunsch does not give good results for a random protein provided with the quantum generator contrary to Quantum Smith-Waterman algorithm. Moreover, the structure of the scoring matrix constructed with the Needleman-Wunsch algorithm is less adapted for QAOA. QAOA has difficulty finding the fundamental state of the quantum system due the spectrum of the scoring matrix is globally symmetrical, resulting in a very slow resolution time, which is not the case for the Smith-Waterman or the Conflict graph algorithms".

- tested on 8 qubits on a Qiskit emulator.
- no "quantum" advantage.

other cases studies

Brain Tumor Diagnosis Using Quantum Convolutional Neural Networks

Muhammad Al-Zafar Khan[®][¶], Nouhaila Innan^{®‡*}, Abdullah Al Omar Galib^{§†}, Mohamed Bennai^{®‡**} [¶]Quantum United Arab Emirates (QUAE), UAE [‡]Quantum Physics and Magnetism Team, LPMC, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Morocco [§]Independent Researcher [¶]m.khan@quae.ae,*nouhaila.innan-etu@etu.univh2c.ma,[†]abdullahalomargalib@gmail.com,**mohamed.bennai@univh2c.ma

January 2024

Peptide Binding Classification on Quantum Computers

Charles London^{1†} Douglas Brown^{1†} Wenduan Xu¹ Sezen Vatansever² Christopher James Langmead² Dimitri Kartsaklis¹ Stephen Clark¹ Konstantinos Meichanetzidis¹

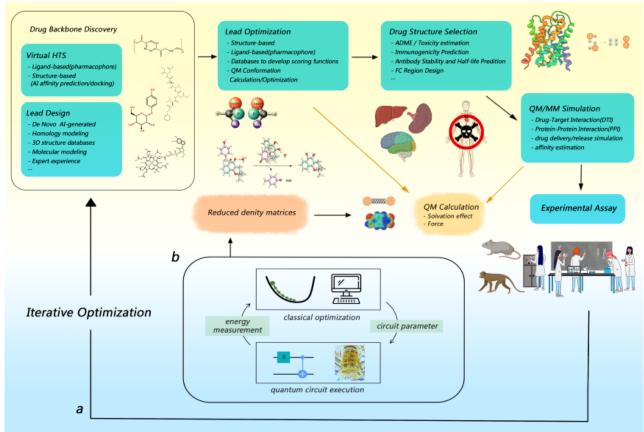
{charles.london; douglas.brown; wenduan.xu; dimitri.kartsaklis; steve.clark; k.mei}@quantinuum.com {svatanse; clangmea}@amgen.com

> ¹Quantinuum, 17 Beaumont St., Oxford, OX1 2NA, UK ²Amgen, 1 Amgen Center Dr., Thousand Oaks, 91320, CA, USA

> > November 2023

- good results.
- tested on a 5-qubit emulator.
- no "quantum" speedup advantage.
- this is classical computing.

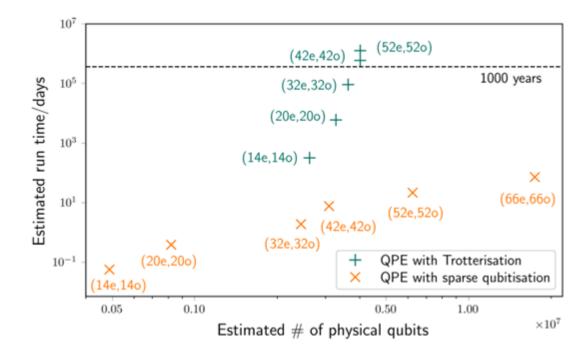
- good results.
- tested on a 8-qubit Quantinuum QPU.
- no "quantum" speedup advantage.


quantum-based multi-omics

source: Towards quantum-enabled cell-centric therapeutics by Saugata Basu et al, IBM Research, July 2023

drug discovery pipeline

source: Generalizable Quantum Computing Pipeline for Real World Drug Discovery by Weitang Li et al, arXiv, January 2024.



HTS: High Throughput Screening

	Computational Wall Time (s)			
Molecule	CASCI	VQE		
4	358	424		
5	3	63		
6	97	161		
TS	360	424		
	classical method	current VQE NISQ based method		

TABLE II. Comparison of computational wall times for classical computing (CASCI) and quantum computing (VQE) on solving the active space of molecule **4**, **5**, **6**, and **TS**.

source: Generalizable Quantum Computing Pipeline for Real World Drug Discovery by Weitang Li et al, arXiv, January 2024.

river Lane

Figure 7: Comparison of resources (runtime and total number of physical qubits) using two QPE algorithms. The first (orange) used qubitisation, and the Hamiltonian was truncated to remove small terms up to an error budget. The second (green) used textbook QPE with Trotterisation and no truncation of the Hamiltonian. The latter algorithm has a much steeper scaling in runtime. Even for a (14e,14o) active space the runtime is multiple orders of magnitude more expensive.

D-Wave use cases in healthcare

cancers classification multi-omics: genomics + symptoms in QML *source: D-Wave*

liver donor optimization NP-complet complete problem using QUBO source: Accenture, D-Wave

radiotherapy optimization to minimized x-ray dose source: Roswell Park, D-Wave

de-novo proteins and polypeptides creation with hybrid computing, tests in research against the covid-19 virus. *source: D-Wave*

drug retargeting with Biogen, 1QBit and Accenture research *source: D-Wave*

Pasqal use cases in healthcare

quantum algorithms able to sample equilibrium water solvent molecules configurations within proteins thanks to analog quantum computing

Leveraging Analog Quantum Computing with Neutral Atoms for Solvent Configuration Prediction in Drug Discovery

Mauro D'Arcangelo^{1, +}, Daniele Loco^{2, +}, Fresnel team¹, Nicolaï Gouraud^{2,3,4}, Stanislas Angebault², Jules Sueiro², Pierre Monmarché³, Jérôme Forêt², Louis-Paul Henry¹, Loïc Henriet^{1,*}, and Jean-Philip Piguemal^{2,4,*}

¹Pasqal, 7 Rue Léonard de Vinci, 91300 Massy, France

²Qubit Pharmaceuticals, Advanced Research Department, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France

³Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005, Paris, France ⁴Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 75005, Paris, France ^{*}loic.henriet@pasgal.com, jean-philip.piquemal@sorbonne-universite.fr

⁺these authors contributed equally to this work

RASQAL

Quantum Feature Maps for Graph Machine Learning on a Neutral Atom Quantum Processor

Boris Albrecht,^{1, *} Constantin Dalyac,^{1, 2, *} Lucas Leclerc,^{1, 3, *} Luis Ortiz-Gutiérrez,^{1, *} Slimane Thabet,^{1, 2, *} Mauro D'Arcangelo,¹ Vincent E. Elfving,¹ Lucas Lassablière,¹ Henrique Silvério,¹ Bruno Ximenez,¹ Louis-Paul Henry,¹ Adrien Signoles,¹ and Loïc Henriet^{1, †}

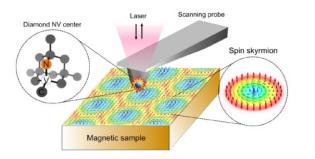
> ¹PASQAL, 7 rue Léonard de Vinci, 91300 Massy, France
> ²LIP6, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
> ³Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France (Dated: November 30, 2022)

toxicity screening experiment, consisting of a binary classification protocol on a biochemistry dataset comprising 286 molecules of sizes ranging from 2 to 32 nodes, and obtain results which are comparable to those using the best classical kernels

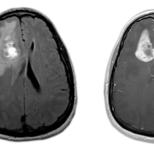
A blueprint for a Digital-Analog Variational Quantum Eigensolver using Rydberg atom arrays

Antoine Michel,^{1, 2, *} Sebastian Grijalva,³ Loïc Henriet,³ Christophe Domain,¹ and Antoine Browaeys²

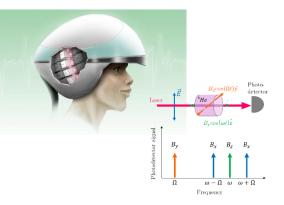
¹Electricité de France, EDF Recherche et Développement, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing, France ²Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau Cedex, France ³PASQAL, 7 rue Léonard de Vinci, F-91300 Massy, France (Dated: April 25, 2023)

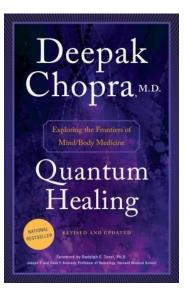

estimating the ground-state energy of Hamiltonians coming from chemistry. Study numerically the behavior of a digital-analog variational quantum eigensolver for the H2, LiH and BeH2 molecules.

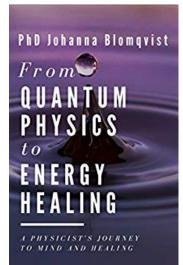
chemistry and healthcare QC startups

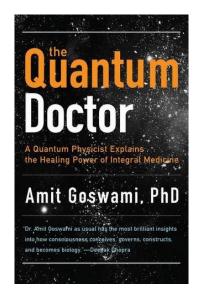


quantum sensors in healthcare

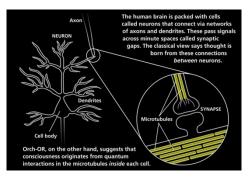



magnétomètres ultrasensibles 210 fT/ $\sqrt{\text{Hz}}$

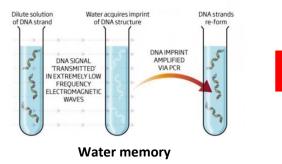

medical imaging biological analysis SQUID based ultra-low field MRI helium 4 nucleus spin MEG brain imaging

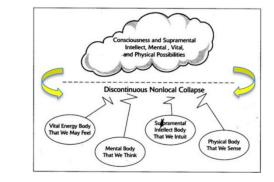

key takeaways

- 1. quantum computing can bring significant advantage like with **quantum simulations** for drug discovery but only in a FTQC regime.
- 2. it will require a large number of logical and physical qubits and require some patience.
- 3. quantum algorithms can be tested at **small scales** with existing QPUs or emulators.
- 4. there are some interesting **analog quantum computing** use cases, particularly for optimizations.
- 5. quantum sensors already work.


exponential b t

fake quantum medicines



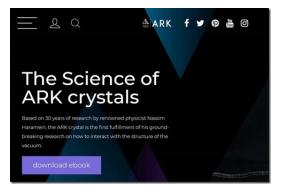

Roger Penrose's Orch-OR theory

What Montagnier claims

© NewScientist

A weak electromagnetic field can form an imprint of a DNA strand in pure water, which can then be used to reconstruct the original DNA

Quantum consciousness


Structured water

Biophotons detectors

Scalar waves generators

Magic quantum crystals

Quantum Shield medallions

5G BioShield "quantum holographic catalyst"

Roll over image to zoom in

i9Bottle Chakra - Healing Crystals, Reusable Glass Water Bottle, Yoga Bottle, Relieve Stress, Super Hydration, Increases Physical Fitness, Body Detox, Chakra Balancing, Sustainable Gifts, Zero Waste, Meditation Brand: 19

★★★★☆ × 102 ratings

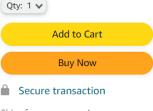
^{\$}59⁹⁰

Ċ

INFORMED

(t)

No Import Fees Deposit & \$13.89 Shipping to France Details ~MaterialGlass, SiliconeBrandI9Capacity1.4 PoundsAge Range
(Description)Women aged 30 to 70 yearsSpecial FeatureThe bottle improves water quality


^{\$}59⁹⁰

No Import Fees Deposit & \$13.89 Shipping to France Details ~

Delivery **Thursday, August 18**. Order within 4 hrs 49 mins

Or fastest delivery **Friday**, **August 12**

In Stock.

discussion