DA VINCI DIALOGUES SÉMINAIRE DEEP TECH

9-10 AVRIL 2024

S

CHÂTEAU LOUISE DE LA VALLIÈRE REUGNY, INDRE-ET-LOIRE

À LA DÉCOUVERTE DES TECHNOLOGIES QUANTIQUES

Olivier Ezratty

à la découverte des technologies quantiques

olivier ezratty

{ auteur | ... }
Tours, 10 avril 2024
olivier@oezratty.net www.oezratty.net @olivez

14 May 2018

Alain Aspect

Fanny Bouton at OVHcloud since June 2020

sciences used with quantum technologies

physics

electromagnetism quantum physics quantum matter thermodynamics fluids mechanics photonics

engineering

materials design

electronics engineering cryogenics mathematics linear algebra groups theory analysis complexity theories

π

computer science

information theory algorithms design programming classical computing telecommunications machine learning

human sciences philosophy epistemology sociology technology ethics economics of innovation R&D policy making geopolitics startups ecosystem

1st and 2nd quantum revolutions

first quantum revolution

manipulating groups of quantum particles photons, electrons and atoms interactions

transistors, lasers, fiber optics, GPS photovoltaic cells, atom clocks medical imaging, digital photography and video LEDs, LCD TV quantum dots

1947-*

second quantum revolution

manipulating superposition and entanglement and/or individual particles

quantum computing quantum telecommunications quantum cryptography quantum sensing (cc) Olivier Ezratty, 2021, 2023

end of Dennard scale in 2006

Table MM-7Device Architecture and Ground Rules Roadmap for Logic Devices.

Note: GxxMxx/Tx notation refers to Gxx: contacted gate pitch, Mxx: tightest metal pitch in nm, Tx: number of tiers. This notation illustrates the technology pitch scaling capability. On top of pitch scaling there are other elements such as cell height, number of stacked devices, DTCO constructs, 3D integration, etc. that define the target area scaling (gates/mm²).

Acronyms used in the table (in order of appearance): LGAA—lateral gate-all-around-device (GAA), CFET (Complementary Field Effect Transistor), 3DVLSI—fine-pitch 3D logic sequential integration.

quantum computing promise

solving intractable / exponential problems in **reasonable** time

typical exponential problems

T31

$\partial W(\alpha t)$	$\lambda^2 = \lambda^2 m(\alpha + \lambda)$	
$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -$	$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial^2}+V(x)\Psi(x,t)$	t)
đt	$2m \partial x^2$	-

solving Schrodinger's wave equation to simulate quantum matter

machine learning and deep learning

$rac{\partial^2 u_1}{\partial x_1^2} + rac{\partial^2 u_2}{\partial x_2 \partial x_1} +$	${\partial^2 u_3\over\partial x_3\partial x_1}+$	$\frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2}$	$+rac{\partial^2 u_1}{\partial x_3^2}+f_1=0$
$rac{\partial^2 u_1}{\partial x_1 \partial x_2} + rac{\partial^2 u_2}{\partial x_2^2} +$	${\partial^2 u_3\over\partial x_3\partial x_2}+$	$\frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_2^2}$	$+rac{\partial^2 u_2}{\partial x_3^2}+f_2=0$
$\frac{\partial^2 u_1}{\partial x_1 \partial x_3} + \frac{\partial^2 u_2}{\partial x_2 \partial x_3}$	$+ {\partial^2 u_3\over\partial x_3^2} +$	$\frac{\partial^2 u_3}{\partial x_1^2} + \frac{\partial^2 u_3}{\partial x_2^2}$	$+rac{\partial^2 u_3}{\partial x_3^2}+f_3=0$

solving partial derivative equations

breaking asymmetric cryptography keys

quantum computing usage categories

research

operations

10

what is a qubit?

basic unit of quantum information

vector in a 2-dimension complex numbers Hilbert space

probabilities and Born normalization constraint

Bloch sphere representation with amplitude and phase

oresentation and phase

two-level state controllable quantum object

separable atom energy level

0)

electron or nucleus spin orientation

photon mode (polarization, number, frequency) N qubits handle the equivalent of **2^{N+1} real numbers** during computation

it benefits from **quantum parallelism** brought by superposition, engtanglement and interferences

layout of a 133-qubit processor from IBM

from computing to measurement

a new programming model

visual quantum circuits design

https://algassert.com/quirk

online open source tool to learn, program and emulate up to 16 « perfect » qubits

scripted Python code

```
# Initialize counting qubits
# in state |+>
for q in range(n_count):
    qc.h(q)
```

```
# And auxiliary register in state |1>
qc.x(3+n_count)
```

```
# Do inverse-QFT
qc.append(qft_dagger(n_count), range(n_count))
```

```
# Measure circuit
qc.measure(range(n_count), range(n_count))
qc.draw(fold=-1)  # -1 means 'do not fold'
```

IBM Qiskit, Google Cirq, Eviden Qaptiva

some key differences

$$\begin{split} f(\lambda x) &= \lambda f(x) \text{ for all } \lambda, x \in \mathbb{R} \\ f(x+y) &= f(x) + f(y) \text{ for all } x, y \in \mathbb{R} \\ \langle \Psi_1 | \Psi_2 \rangle &= \left[\overline{\alpha_1}, \overline{\beta_1} \right] \times \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} = \overline{\alpha_1} \alpha_2 + \overline{\beta_1} \beta_2 \\ |\Psi_2 \rangle \langle \Psi_1 | &= \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \times \left[\overline{\alpha_1}, \overline{\beta_1} \right] = \begin{bmatrix} \alpha_2 \overline{\alpha_1} & \alpha_2 \overline{\beta_1} \\ \beta_2 \overline{\alpha_1} & \beta_2 \overline{\beta_1} \end{bmatrix} \end{split}$$

need to understand linear algebra

breakpoints become endpoints

uncopiable data, but transferable

main qubit types

quantum & classical computing paradigms

classica	l computers	analog quantu	m computers	digital quantur	m computers	
quantum inspired	quantum emulators	quantum	analog	gate-b	ased	
running on classical computer, inspired by quantum algorithms.	computers code on classical computers, for training, debugging and testing	annealing computers	quantum simulators	NISQ (Noisy Intermediate Scale Quantum) no error correction with a few noisy qubits	FTQC (Fault-Tolerant Quantum Computers) error correction and fault tolerance	y, 2023
classical algorithms improvements	quantum algorithms debug and testing	optimization proble physics sin	ems and quantum mulation	general purpose qua adds search and in	antum computing, nteger factoring	ier Ezratt
	eviden <u>IEM</u>			IBM rigetti	Ψ PsiQuantum	(cc) Oliv
	FUJITSU Google	(, , , , , , , , , , , , , , , , , , ,		Google IQM	ALICE & BOB	
ZAPATA //AI	Microsoft aWS		: 434 44 1 F 420 ×		Microsoft	
	QUANDELA C12			QUANTINUUM QUANDELA XANAD	U	

émulateur quantique (langa)

Domaine : INFORMATIQUE/Info Définition : Dispositif qui util conçu pour un ordinateur c Note : La durée d'exécution exponentiellement avec le superordinateurs classiques Voir aussi : algorithme quant Équivalent étranger : quantur

Mardi 20 décembre 2022/N° 294

SOMMAIRE ANALYTIQUE

LOIS

1 LOI nº 2022-1587 du 19 décembre 2022 visant à lutter contre la fraude au compte personnel de formation et à interdire le démarchage de ses titulaires

Décrets, arrêtés, circulaires

textes généraux

Première ministre

- 2 Arrêté du 4 novembre 2022 établissant la liste des membres du Conseil supérieur des gens de mer
- 3 Arrêté du 15 décembre 2022 relatif à l'approbation de la modification du cahier des charges de l'appel à projets « Innovations en biothérapies et bioproduction »
- 4 Avenant nr 2 du 19 décembre 2022 relatif à la convention du 13 février 2017 portant avenant nr 4 à la convention du 20 octobre 2010 entre l'Etat et l'Agence nationale pour la rénovation urbaine (ANRU) relative au programme d'investissements d'avenir (actions : « Internats d'excellence et égainté des chances » et « Internats de la réussite »).

ministère de l'économie, des finances et de la souveraineté industrielle et numérique

- 5 Arrêté du 2 décembre 2022 portant abrogation de l'arrêté du 21 octobre 2022 pris en application des articles L. 562-3 et suivants du code monétaire et financier
- 6 Arrêté du 13 décembre 2022 relatif à la classification des engagements d'assurance consécutifs aux atteintes aux systèmes d'information et de communication

uter un algorithme quantique

nulation quantique croissent npliquer le recours à des

quantum computing paradigms

gates-based quantum computers

quantum annealers

quantum simulators

sequential programming of quantum gates, can implement any algorithm and Hamiltonian transformation

QUANDELA

finding a ground state of an Ising model, optimization problems are mapped to Ising models (QUBO)

finding a ground state of an Ising model or XY quantum simulation model (with more degrees of liberty)

analog quantum computing

some mathematical **problem** with data inputs and desired output.

algorithm to solve the given problem, which are mostly hybrid and/or variational.

with analog quantum computing, the quantum part of the algorithm may map itself to a generic QUBO or Ising **model formulation.**

QUBO/Ising model may itself map to a generic problem formulation like **BQM** in the case of D-Wave annealers.

the reformulated problem is **directly solved** by the (analog) quantum computer, in an hybrid manner along with a classical computer.

QPUs vendors per qubit type

23

(cc) Olivier Ezratty, 2024

France QPU startups

inside a typical quantum computer

for superconducting or electron spin qubits

superconducting qubits

Harvard / QuEra logical qubits

source: Logical quantum processor based on reconfigurable atom arrays by Dolev Bluvstein, Mikhail D. Lukin et al, December 2023 (32 pages).

all qubit types have their challenges

quantum annealing

- mature development tools offering.
- large number of software startups, particularly in Japan and Canada.
- quantum annealers are available in the cloud by D-Wave and Amazon Web Services.
- · the greatest number of well documented case studies in many industries although still at the proof of concept stage.
- most universal oubits gates algorithms can be

superconducting qubits

- key technology in public research and with commercial vendors (IBM, Google, Rigetti,
- record of 433 programmable gubits with IBM.
- constant progress in noise reduction. could enable a record low ratio of physical/logical pubits.
- many existing enabling technologies:
- potentially scalable technology and

particularly with the cat-oubits variation which

- cryostats, cabling, amplifiers, logic, sensors.
- deployable in 2D geometries.

trapped ions qubits

- identical ions => no calibration required like with superconducting/electron spin aubits.
- good gubits stability.
- excellent gubit gate fidelities and high ratio between coherence time and gate time => supports deep algorithms in number of gate cycles.
- entanglement possible between all gubits on 1D
- requires some cryogeny at 4K to 10K => simpler.
- easy to entangle ions with photons for long distance communications.

silicon spin qubits

- good scalability potential to reach millions of gubits, thanks to their size of 100x100 nm.
- works at around 100 mK 1K => larger cooling
- relatively good oubits fidelity reaching 99.6% of gubits.
- adapted to 2D architectures usable with
- surface codes or color codes QEC.
- can leverage existing semiconductor fabs. good quantum gates speed.

- scalability remains to be demonstrated.

qubits NV centers

- works at 4K, with simple cryogeny without dilution
- can also potentially work at ambiant temperature, with some limitations on entanglement.
- long coherence time > 1 ms.
- strong and stable diamond structure.
- can also help create quantum memory for other qubits types, like superconducting qubits.
- · possible to integrate it with optical quantum telecommunications.

- manufacturing.

relatively slow computing due to long quantum gate times which may be problematic for deep algorithms.

neutral atoms qubits

- · long qubit coherence time and fast gates.
- operational systems with 100-300 atoms. identical atoms, that are controlled with the
- same laser and micro-wave frequencies (but
- works in both simulation and gate-based
- no need for specific integrated circuits.
- uses standard apparatus.
- low energy consumption.

- losing atoms during computing.

- **Majorana fermions**
- theorically very stable gubits with low level of required error correction.
- long coherence time and gates speed enabling processing complex and deep algorithms.
- potential gubits scalability, built with technologies close to electron spin qubits.
- field could be fruitful with no Maiorana

- no Maiorana fermion gubit demonstrated vet.

photons aubits

- stable gubits with absence of
- gubits processing at ambiant temperature. emerging nano-photonic manufacturing
- easier to scale-out with inter-oubits
- telecommunications.
- MBOC/FBOC circumventing the fixed gates depth computing capacity.

- not yet scalable in number of operations due to probabilistic character of quantum gates and the efficiency of photon sources in most paradigms.

gubit fidelities are average with most vendors.

key hardware challenges

qubits fidelities

errors mitigation and correction

(e) t type modularity involves microwave-to-optical transduction to link QPUs in different dilution refrigerators.

quantum interconnect

enabling technologies scalability

energy consumption

quantum memory

raw algorithm fidelities requirements

desired error rate $< \frac{1}{N \times D}$

			required			
N D			error rate	required	available	
	qubits	depth	(%)	fidelity (%)	fidelity (%)	
	50	100	0.02000%	99.98%	99.30%	
	133	300	0.00251%	99.9975%	99.6%	
	433	1000	0.00023%	99.9998%	98%	
	1121	2000	0.00004%	99.99996%	N/A	

qubit errors quickly kills quantum computing accuracy

qubit errors sources

how to improve qubit fidelities? *

materials

manufacturing

tune qubit parameters

Cross-Cross Resonance Gate

Kentaro Heya^{1,2,*} and Naoki Kanazawa^{1,†}

¹ IBM Quantum, IBM Research Tokyo, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan ² Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan

High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

 Yosep Kim,^{1,*} Alexis Morvan,¹ Long B. Nguyen,¹ Ravi K. Naik,^{1,2} Christian Jünger,¹ Larry Chen,² John Mark Kreikebaum,^{2,3} David I. Santiago,^{1,2} and Irfan Siddiqi^{1,2,3}
 ¹Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Dated: December 21 2022)

use different primary gates

improve control signals quality

logical qubits and FTQC

physical qubit

error rates ≈0.1%

logical qubit

error rate $<10^{-8}$ to $<10^{-15}$

error correction code

threshold, physical qubits overhead, connectivity requirements, syndrome decoding and scale

fault tolerance

avoid error propagation and amplification implement a universal gate set fault-tolerant results readout

tens to thousands qubits

Microsoft-Quantinuum logical qubits

Demonstration of logical qubits and repeated error correction with better-than-physical error rates

M. P. da Silva,¹ C. Ryan-Anderson,² J. M. Bello-Rivas,¹ A. Chernoguzov,² J. M. Dreiling,² C. Foltz,² J. P. Gaebler,² T. M. Gatterman,² D. Hayes,² N. Hewitt,² J. Johansen,² D. Lucchetti,² M. Mills,² S. A. Moses,² B. Neyenhuis,² A. Paz,¹ J. Pino,² P. Siegfried,² J. Strabley,² S. J. Wernli,¹ R. P. Stutz,² and K. M. Svore¹

¹Microsoft Azure Quantum ²Quantinuum (Dated: April 2, 2024)

The promise of quantum computers hinges on the ability to scale to large system sizes, e.g., to run quantum computations consisting of more than 100 million operations fault-tolerantly. This in turn requires suppressing errors to levels inversely proportional to the size of the computation. As a step towards this ambitious goal, we present experiments on a trapped-ion QCCD processor where, through the use of fault-tolerant encoding and error correction, we are able to suppress logical error rates to levels below the physical error rates. In particular, we entangled logical qubit states encoded in the [[7, 1, 3]] code with error rates 9.8× to 500× lower than at the physical level, and entangled logical qubit states encoded in a [[12, 2, 4]] code with error rates below physical circuit baselines corresponding to repeated CNOTs, and show evidence that the error rate of two physical CNOTs. These results signify an important transition from noisy intermediate scale quantum computing to reliable quantum computing, and demonstrate advanced capabilities toward large-scale fault-tolerant quantum computing.

https://arxiv.org/abs/2404.02280

claim: logical qubit with x800 improvement vs physical qubit reality: x800 improvement only for the first gate cycle!

FIG. 7. Observed error rate for circuits with 1 to 3 rounds of error correction with the [[12, 2, 4]] Carbon code (green circles) and physical baselines (blue diamond for pairs of 1bit teleportations, and orange squares for pairs of CNOTs). Results are offset along the x-axis for clarity. Linear fits are obtained by maximum-likelihood estimation (see Appendix A for details).

https://scottaaronson.blog/?p=7916#comment-1973425

logical qubits requirements

NISQ VQA process

VQE for benzene ground state 72 qubits and 330,816 Pauli strings

number of physical qubits

key software challenges

data loading

tensor networks competition

actual speedups

benchmarking

actual computing time

coding abstraction level

quantum algorithms patterns

« hidden » function used in search algorithms, may rely on quantum memory

amplitude amplification used in Grover algorithm

uncompute trick

to disentangle ancilla qubit after computing without losing results, used in HHL, U being a QPE

measurement

with optional basis change using Pauli strings (in VQA)

data preparation other algorithms

or

period finding finds the periods decomposes or recomposes a of a signal signal into/from it components creates a superposition of 2st computational states controlled U operation and phase kickback to inverse quantum Fourier transform first n aubit 0) — H unitary U 7 0) — H QFT any combination $|0\rangle - H$ $C - U^{2^0} - C - U^{2^1} - \cdots - C - U^{2^{n-1}}$ of quantum gates $|\psi\rangle \neq^m$ epeated $O(1/\epsilon)$ times

QFT

phase

estimate

(QPE)

ansatz

Hamiltonian injection used in NISQ variational algorithms

algorithms inputs and outputs

	algorithm	classical input	quantum input blue for superposed state	quantum output blue for superposed state	classical output	acceleration (# of circuit runs)
	Deutsche-Jozsa	balanced or unbalanced function in oracle	oracle function	function is balanced if all output qubits are at ground state $\left 0\right\rangle$	« yes or no »	exponential (O(1))
	Bernstein-Vazirani	string encoded in a function	can be entirely quantum using a series	(integer) secret string in basis encoding	integer	exponential (O(1))
	Grover	function returning 1 only for one basis	use case) or access some classical data in superposition using a qRAM (which	searched item index as integer in basis encoding	integer	quadratic (O(1))
ž	Simon	periodic function	does not exist yet)	parameters for a linear equation used to find a period, with average of basis encoding	integer representing function period	exponential (O(1))
Ē	Shor factoring	semi-prime integer	Hadamard gates and parametrized period finding function with	regularly spaced amplitudes starting with 0	dividing integer found with continuous fraction post-	exponential (depends period
	Shor dlog	two integers	exponentiations		processing	finding integer)
	QFT	series of values	series of complex amplitudes with	Fourier coefficients in amplitude encoding, enabling the recovery of the main frequency	main frequency	exponential (O(1))
	QPE	Hamiltonian	amplitude encoding	phase encoded in bitstring	phase as a real number	exponential (O(1))
	HHL	one vector and one matrix	one vector and one matrix amplitude encoding	inverted matrix x entry vector (= one vector) in amplitude encoding	characteristics of the vector to obtain one eigenvalue	exponential (depends)
	QAOA	objective function to optimize	cost function parameters aneoded in	probabilistic distribution of Pauli strings	cost function value and objective function params	not proven (many)
NISQ	VQE	problem Hamiltonian	an ansatz function (rotation gates and CNOTs)	probabilistic distribution of Pauli strings components of Hamiltonian ground state	cost function evaluation, ansatz update, ground state Hamiltonian	not proven (many due to cost function convergence, Pauli strings # & precision)
	QML classification	depends (training, inference, model)	object vector to classify encoded in amplitude	prediction result as an integer index in basis encoding	integer representing object position in a reference table	depends (many)

potential quantum speedups

a matter of perspective

(cc) Olivier Ezratty, 2023, inspired by Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage by Torsten Hoefler, Thomas Häner, Matthias Troyer, 2023.

quantum advantages taxonomy

€\$£ TCO ROI

space

the qubit register data space - scaling in 2^N complex numbers with N qubits - exceeds the memory capacity of classical computers.

speed

a quantum algorithm, including its classical part, runs faster than an equivalent best-inclass classical algorithms running on either the largest supercomputers or a given HPC configuration.

quality

the quality of the results of a quantum algorithm is better for some respect than the best-in-class classical algorithms. e.g: an error rate of a machine learning classification, a chemical simulation accuracy, or a better combinatorial problem solution.

energetic

a fully-burdened quantum computer and algorithm configuration consumes less energy than the best-in-class classical equivalent.

cost

the total cost of the quantum solution is lower than the total cost of a best-inclass classical solution.

a long journey

quantum computing cloud offerings

what is being practically done

classical computers		analog quantum computers digital quantum comp		n computers	
quantum inspired	quantum emulators	quantum annealing computers	analog quantum simulators	gate-ba NISQ (Noisy Intermediate Scale Quantum)	FTQC (Fault-Tolerant Quantum Computing)
 financial services solutions improvements. machine learning improvements. 	 code learning. code debugging. designing new algorithms. simulating qubit physics. simulating error correction codes. 	 solving optimization problems at mid- sized scale, in transportation (Volkswagen, Denso), retail (Ocado, Pattison), job shop scheduling and financial services (Mastercard, CACIB). physics simulations (statistical physics, spin glass, ferromagnetism, topological matter,). potential energetic advantage. 		 low-level physics simulations ("IBM quantum utility" with 127 qubits and kicked Ising model). creating and testing algorithms at small scale (QML, optimizations, chemical simulations). 	 large algorithms and resource estimations. creating and testing error correction codes (Google, Quantinuum, QuEra, PsiQuantum,).
CALPHARAIL	Qubit I	CaixaBank Raiffeisen Bank International Member of RBI Group	CRÉDIT AGRICOLE CORPORATE & INVESTMENT BANK	AIRBUS EDF MBDA ISSUE SUBTER	B HYUNDRI J.P.Morgan Goldman Sachs

why study quantum computing now?

- **1. understand** the quantum computing technology and buzz.
- 2. **become ready** when quantum computing delivers.
- **3.** attract **high-level talent** in your organization.
- 4. challenge and revisit legacy classical solutions.
- 5. envision lower energy consumption in HPC applications.

industry vendors ecosystem

discussion