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second quantum revolution pillars

quantum
computing

quantum
sensing

quantum
communications

quantum
matter

quantum
enabling technologies



3

ac
ad

e
m

ic
 r

e
se

ar
ch engineering

technology 
development

commercialization

theory

experiments

in
d

u
st

ry

a virtuous cycle at play



4

continuous advances in all fields

quantum computing

• reaching 99.9% qubit fidelities.
• qubit number >100 (IBM, QuEra, …).
• efficient error correction codes.
• first logical qubits.
• non-local qubit connectivity.
• progress with all types of qubits. 
• solving interesting physics problems.
• NISQ quantum utility (still debated).

quantum enabling technologies

• cryo-CMOS and SFQ electronics.
• flexible cables.
• qubit readout TWPAs.
• high-power cryogenics.
• fibre lasers.
• low-loss fibres and waveguides.
• higher efficiency SNSPDs and PNRDs.
• deterministic quantum dots photon sources.

quantum sensing

• commercial absolute gravimeters.
• quantum PNT experiments.
• quantum LiDARs.
• 10-19 s accuracy quantum clocks.
• broad spectrum analysis with cold atoms.

quantum communications

• longer distance QKD.
• higher sat and terrestrial QKD keyrates.
• QPU interconnect trials.
• telecom-wavelength QKD.
• first memories for entanglement repeaters.
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2025: 
84 qubits (Ankaa)
36 qubits (better fidelities)

2025: 
36 qubits (Forte)

but it takes time
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an amazing technology diversity

superconducting topologicalvacanciesannealing silicontrapped ions photonscold atoms

electrons controlled spin and microwave cavitiesatoms photons
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what should we have in FTQC roadmaps?

bare minimum nicer to have
• # logical qubits.
• supported circuit 

size / logical error 
rates.

• # physical qubits.

• clock speed and QLOPs/s.
• planned QEC codes and methods.
• processor size & reliance on QPU interconnect.
• peak power consumption in W.
• components operating temperature.
• QPU weight and size.
• operational constraints like temperature variability.
• components MTBF.
• capex/opex cost structure.

operational 
metrics
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challenge 1: qubit infidelities at scale

viable NISQ zone in a 
quantum advantage
regime without QEM
(hard to obtain)

quantum error 
mitigation NISQ 
utility window

goodbad

route to FTQC, 
requiring a large 
number of quality
qubits

new correlated noise sources?

lower chips variability?
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challenge 2: chips iteration cycles

silicon spin qubits

start 6 months 12 months 18 months

photonic integrated circuits

superconducting qubit chips time saving opportunities

• integrated EDAs.
• dedicated clean rooms.
• clusters.
• parallelization.
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challenge 3: quantum error correction

logical memory 
qubit

single-qubit 
logical  gate

two-qubit 
logical  gate

magic-state 
preparation (T)

magic-state 
teleportation

qubit connectivity

real-time error syndrome detection

leakage error 
correction

correlated 
errors 

correction

qubit physical gate fidelities >99.9% at scale

scaling QPU with interconnect and gate teleportation + circuits partitionning

green: QEC components.
orange: QEC enablers.

qubit fast measurement

code switching

calibration
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challenge 4: enabling technologies
control and 

readout signals 
multiplexing

control signals 
quality

room 
temperature 
electronics

cryo-electronics

QPU scaling cabling scaling

?

?

QPU 
interconnect

mw/optical 
photons 

transduction

cryogenics 
scaling?

?

manufacturing 
quality, 

crosstalk
? ?

more powerful 
lasers

laser phase 
noise?



13

challenge 5: energetics

acceptability threshold hypothesis

largest WW supercomputers

4K logical qubit QPU estimates

estimate base power for various QPUs and actual for existing largest HPCs WW. 
HPC source: https://www.top500.org/lists/top500/2024/06/.
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IEEE P3329 Quantum Energy 
Initiative (QEI) Working Group
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challenge 6: software stacks

practical vs theoretical speedups

compiler & optimizers scalability

classical pre- and post-
processing costs (chemistry)

verification, certification, 
benchmarking.

classical computing progress 
(MPS, DMRG).

inspired by Opening the Black Box inside Grover's Algorithm
by E. Miles Stoudenmire and Xavier Waintal, PRX, November 2024.

(*) for a fair comparison, the classical computer can be as expensive and/or energy hungry as the QPU.

number of qubits

classical 
computing (*)

quantum 
computing

exponential
speedup

total computing time, log scale

polynomial
speedup

are Te and Tp

compatible with the 
use case constraints?

Te

Tp

“prefactors”

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.041029


15

Europe early adopters - evaluators
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bonus challenge: geopolitics
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get the slides 
now

discussion
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