Modèle d’étude de cas de l’IA

Publié le 18 décembre 2017 et mis à jour le 19 décembre 2017 - 6 commentaires -
PDF Afficher une version imprimable de cet article

L’IA est un sujet relativement nouveau dans l’actualité des entreprises. C’est même “le” sujet le plus à la mode, après les vagues du cloud, de la mobilité et de la transformation digitale multiforme. Il génère son lot d’IA washing, un phénomène aux contours flous où de nombreux éditeurs de logiciels et startups habillent d’IA leurs solutions. Très souvent, cette appellation correspond à un usage d’une ou plusieurs techniques d’IA qui ne sont malheureusement pas toujours précisées. Les briques technologiques de ces solutions sont soit externes soit internes à la société. Il n’y a pas de mal à ce qu’elles soient externes car on ne reprochera pas à une startup de ne pas réinventer la roue.

Vu des clients, il est critique d’accéder à des études de cas de ces fournisseurs, histoire d’évaluer l’intérêt de lancer tel ou tel projet d’IA dans son entreprise. J’avais évoqué la question du “benchmark de l’IA” dans un post en mai 2017.

Nous avons grandement besoin de formalisme pour décrire les études de cas. Cela permet par exemple d’éviter les déclarations enflammées relayées par les médias et qui ne sont étayées par rien du tout. Comme l’exemple ci-dessous où l’on apprend qu’au Japon, une IA a été battue de justesse par des créatifs humains dans une agence de communication (source). Mais pas moyen de mettre la main sur les méthodes employées et sur les réponses des créatifs et de l’IA ! Ni, bien entendu, sur les techniques employées ! On ne voit que des clips vidéos produits par une IA et par des créatifs humains.

Voici donc une proposition de modèle de documentation d’étude de cas de projet intégrant de l’IA. C’est un modèle extensif qui sera probablement rarement complètement rempli. Peu d’entreprises ont envie de documenter leurs projets avec ce niveau de détails. Mais ces études de cas peuvent être réalisées par certains éditeurs pour des projets présentés “behind closed doors”. J’ai notamment pu le constater dans une présentation de Justine Baron de Recast.ai (solution de création de chatbots) lors du séminaire Intelligence Artificielle organisé par Frenchweb lors du Cristal Festival de Courchevel les 14 et 15 décembre 2017. Lors de ce séminaire d’un jour et demi, je faisais un tour d’horizon assez large des techniques et usages de l’IA.

Qu’est-ce qui est spécifique à l’IA dans ce modèle ? C’est ce qui est en bleu ci-dessous.

Société cliente

  • Secteur d’activité.
  • Taille de l’entreprise. Bien préciser la taille de l’entité couverte par la solution. “Total” ou “Orange” n’est pas assez précis. On est souvent trompé par les études de cas qui ne précisent pas leur portée dans une très grande entreprise. Très souvent, les projets n’en concernent qu’une toute petite entité.
  • Lieu, ce qui intéressant dans le cas de déploiements internationaux.

Solution

  • Description métier du besoin et de la solution. Comment faisait-on avant ? Quelles techniques classiques étaient utilisées ? Quels étaient les surcouts engendrés par l’existant ?
  • Description technique de la solution. Quelles techniques d’IA intègre-t-elle : de l’IA symbolique (système expert, moteur de règle, logique floue), du machine learning, des réseaux de neurones simples, du deep learning, des réseaux convolutionnels, des réseaux récurrents ou à mémoire, des techniques de traitement du langage.
  • Copies d’écrans de la solution, vue de l’utilisateur. L’interface utilisateur d’une solution logicielle est aussi importante que sa fonction !
  • Schémas fonctionnels, un diagramme des flux des données avec leurs sources étant indiqué.

Données

  • Nature, volume, origine et coût des données d’entrainement puis de production. Quels capteurs les ont générées (logs Internet, objets connectés, …). Quelles données sont d’origine interne et externe à l’entreprise ? Quelles données exploitées relèvent de l’open data. Quelles sont leurs conditions d’obtention commerciales ou en open data ?
  • Fréquence de la mise à jour opérationnelle des données. Comment le modèle est-il réentrainé avec l’arrivée de nouvelles données ?
  • Taux d’erreur mesuré de la solution si applicable. Ce taux est mesuré après l’entrainement du système d’IA si celui-ci utilise du machine learning ou du deep learning.
  • Anonymisation des données exploitées le cas échéant. Est-ce que les données qui alimentent le machine learning ou le deep learning sont bien anonymisées. Normalement, c’est toujours le cas.
  • Vidéo avec témoignage et démonstration, le cas échéant.

Fournisseurs

  • Technologies. Au sens : logiciels de base (TensorFlow), d’infrastructure (Spark, Hadoop), progiciels divers et autres.
  • Prestataires de services. En indiquant leur apport dans le projet.
  • Ressources en cloud si pertinent. Et notamment, si des processeurs spécialisés (GPU ou neuromorphiques) sont utilisés, notamment pour l’entrainement d’un modèle de deep learning.

Dates

  • Début du projet.
  • Date des premiers tests opérationnels. Ce que l’on appelle un “PoC”, pour proof of concept.
  • Date de la mise en production. Et portée de la mise en production en nombre d’utilisateurs.

Economie

  • Coût du projet. Ressources humaines consommées en interne et en externe pour créer la solution. Types de compétences : développeurs, data-scientists, etc.
  • Durée d’entrainement des modèles, dans le cas de solutions à base de deep learning.
  • Nombre d’utilisateurs de la solution. Aujourd’hui et demain.
  • Retour sur investissement. C’est la partie la plus difficile à mesurer sur de nombreux projets. Il faut pouvoir y intégrer l’ensemble des coûts relatifs au projet, y compris la formation des utilisateurs.
  • Validation du projet au regard de la RGPD, la Règlementation Générale de la Protection des Données européenne qui entre en vigueur le 25 mai 2018.

J’ai aussi proposé le modèle à l’équipe du Hub#FranceAI dans le cadre de ses activités de formation des entreprises.

Est-ce complet ? Que manque-t-il à un tel modèle ?

Un volontaire pour créer une première étude de cas entièrement documentée ? Je la publierai volontiers dans ces colonnes !

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 18 décembre 2017 et mis à jour le 19 décembre 2017 Post de | Intelligence artificielle | 6288 lectures

PDF Afficher une version imprimable de cet article          

Reçevez par email les alertes de parution de nouveaux articles :

Les 6 commentaires et tweets sur “Modèle d’étude de cas de l’IA” :

  • [1] - J-Philippe Déranlot (@efficaciTIC) a écrit sur Twitter le 18 décembre 2017 :

    “Modèle d’étude de cas de l’ #iA ” de @olivez sur https://t.co/sBQhgz7qiQ pour @AssoPascaline @CINOV_IT @Lionelhovsepian @iconomie

  • [2] - Benoît Beaucourt (@BenoitBeaucourt) a écrit sur Twitter le 19 décembre 2017 :

    @olivez #proposition de #modèle d’#étudedecas sur l’#IA
    #Intelligence #Artificielle  https://t.co/FoBs6ngm91

  • [3] - Christophe Tricot (@ctricot) a écrit sur Twitter le 20 décembre 2017 :

    Modèle d’étude de cas de l’IA: une bonne trame pour les études de cas https://t.co/bPcqQ2BJqG

  • [4] - Côme Chatagnon a écrit le 20 décembre 2017 :

    Bonjour Olivier,

    Toujours un plaisir et un enrichissement de lire vos articles.

    Dans une étude de cas IA, je rajouterais néanmoins une matrice d’impacts (dont l’humain, trop souvent oublié).
    Identifier l’ensemble des répercussions sur la chaîne de valeur de l’entreprise est nécessaire avant l’implémentation et requiert des compétences et une expérience en IA non négligeables.

    Egalement, les projets IA que nous menons ont des impacts humains généralement plus forts que les projets de transformation plus “traditionnels”. Un point important à prendre en compte.

  • [5] - Olivier Ezratty a écrit le 21 décembre 2017 :

    Intéressant. Sachant cependant qu’une étude de cas n’est pas une thèse de doctorat en économie ou en sciences sociales !

  • [6] - Côme Chatagnon a écrit le 22 décembre 2017 :

    Bien entendu !
    Cependant la matrice d’impacts peut être assez rapidement complétée avec de l’expérience dans les projets IA et une bonne connaissance des métiers de l’entreprise.
    Comme vous le disiez très justement dans votre livre sur l’usage de l’IA : l’intelligence artificielle peut faire peur (syndrome de Frankenstein, disparition des emplois…). Il faut alors accompagner les entreprises et leur faire comprendre que loin de faire disparaître des postes, l’IA transforme (notion “d’augmenté”) et crée des nouveaux besoins humains.
    Bref, je pense que comme dans tout projet, l’entreprise est intéressée non seulement par la solution (très bien découpée dans votre article), mais également – et de plus en plus – par les conséquences (en particulier RH, culture d’entreprise…) sur l’ensemble de la chaîne de valeur de l’entreprise. On est là sur un grand débat : tsunami technologique, culture d’entreprise, humain vs IA… comment garder le juste milieu? (un nouvel article peut être?)

    Je vais m’essayer à votre proposition de modèle en y ajoutant la dimension impact que je décris, et vous ferais un retour quand j’aurai quelque chose de satisfaisant ! 😉




Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
Orange Salon Recherche Dec2017
2017
37 photos
albth
INRIA 50 ans Nov2017
2017
87 photos
albth
TEDx Paris Nov2017
2017
250 photos
albth
TEDxCE Women Paris Nov2017
2017
525 photos
albth
Hello Tomorrow Oct2017
2017
512 photos
albth
CES Unveiled Paris Oct2017
2017
54 photos
albth
S3 Odéon Oct2017
2017
336 photos

Téléchargements gratuits

L'ebook Les usages de l'intelligence artificielle, octobre 2017 (362 pages)

CouvertureAvanceesIA

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Yousra Touki (Air France)
Yousra est chef de projet en analyse de données dans l'audit et le contrôle interne d'Air France KLM.
flow
Pascale Chehikian (Sopra-Steria)
Pascale est manager de projets de création et mise à disposition de services numériques dans les secteurs industriel et tertiaire chez Sopra Steria. Membre du programme Passer’Elles de Sopra Steria en faveur de la mixité.
flow
Elisabeth Moulin (Valeur d'Etre)
Elisabeth est créatrice de "Valeur d'être", organisation dédiée à l'émergence de projets humanistes, innovants pour les professionnels, les entreprises et les particuliers.
flow
Carole Thourigny (8FabLab)
Carole est directrice du 8 Fablab Drôme à Crest.
flow
Marie Poulle (LoveBox)
Marie est cofondatrice et chief brand&sales officer de la startup grenobloise Lovebox.
flow
Marie Dorange (Opla)
Marie est cofondatrice et CEO de la startup Opla dans l’intelligence artificielle, une plateforme de création d’assistants virtuels.
flow
Jade Ataoui (Boost in Lyon)
Jade est Déléguée Générale de BoostInLyon, l'accélérateur de startups de Lyon qui recrute, accompagne et fait décoller les startups lyonnaises. A également cofondé Percola.top, une agence de création de contenus en ligne.
flow
Audrey Moriaud
Audrey est Responsable Réseaux & Télécoms dans une Maison de luxe.
flow
Arlette Quillere (CRT Services)
Arlette est Directrice des Systèmes d’Information chez CRT Services.
flow
Laetitia Guillotin (Fleur en ville)
Laetitia est fondatrice du service en ligne de livraison de fleurs personnalisées Fleur en ville.
flow
Véronique Bardet (Banque Postale)
Véronique est Responsable Exploitation à la DSI de La Banque Postale et du Réseau du groupe La Poste.
flow
Nora Guemar (Engie)
Nora est analyste stratégique sénior à la direction de la stratégie du groupe Engie.
flow
Véronique Bonin (Bouygues)
Véronique est Directrice de la transformation numérique du groupe Bouygues.
flow
Diana Filipova
Diana est responsable de l’écosystème startups chez Microsoft France, où elle a fondé KissMyFrogs.com, le média alternatif des startups et de la tech en France. Egalement cofondatrice du collectif OuiShare, essayiste et écrivain.
flow
Sylvie Roche (CRiP)
Sylvie est Directrice Déléguée du CRiP, le Club des Responsables d’Infrastructure et de Production.
flow
Anna Stépanoff (Wild Code School)
Anna est co-fondatrice et dirigeante du réseau d’écoles numériques Wild Code School qui propose une formation d’excellence ouverte à tous au métier de développeur web et mobile. #entrepreneuse

Derniers commentaires

“Effectivement cela représente un travail colossale. Personne n'est dupe. Il y a pas de mal à être organisé et entouré d'une bonne équipe efficace. Votre commentaire est un mélange d'aigreur et de jalousie. C'est...”
“#CES2018, le premier bilan et les grandes tendances, un #mustread de @olivez...”
“Une mise en bouche toujours très juste qui donne envie d'être le 29 janvier pour avoir la suite ! 😋 bravo @olivez...”
“Toujours un plaisir de lire les compte rendus annuels d'Olivier! Hate de decouvrir le nouveau rapport 2018 et la couv' qui va avec :) Bravo pour ce travail!...”
“Merci Olivier...”

Tweets sur @olivez



Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


Catégories

Tags

http://www.oezratty.net/wordpress/2016/ecosysteme-entrepreneurial-guyane/

Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.