L’impact de l’IA sur la cybersécurité

Publié le 30 novembre 2017 et mis à jour le 1 décembre 2017 - Commenter -
PDF Afficher une version imprimable de cet article

J’intervenais en ouverture du forum annuel du Cert-IST mercredi 29 novembre 2017 à Paris pour dresser un tableau général de l’impact de l’intelligence artificielle sur la cybersécurité (présentations).

Le Cert-ISTComputer Emergency Response Team – Industrie, Services et Tertiaire – est une association qui émane de Thales et qui partage les bonnes pratiques dans la cybersécurité entre ses entreprises françaises membres. On y trouve des banques, opérateurs télécoms, des services publics et divers industriels, notamment des secteurs de l’aérospatial et de la défense. Mon intervention avait été proposée par une autre association, le CLUSIF – Club de la Sécurité de l’Information Français – qui associe des offreurs de solutions de cybersécurité et des utilisateurs de ces solutions. C’est un peu l’équivalent d’un mixte Syntec Numérique + CIGREF (club des DSI de grandes entreprises) appliqué à la cybersécurité.

Mon intervention et celles auxquelles j’ai pu assister lors de ce forum me donnent donc l’occasion de faire un point rapide sur ce sujet épineux de l’impact de l’IA sur la cybersécurité. Le forum mettait très bien en évidence des aspects très pratiques et concrets des usages ou dérives de l’IA, bien loin des thèses fumeuses de la singularité.

Dans mon intervention, j’ai commencé, comme d’habitude, par segmenter les technologies de l’IA en grandes composantes : les moteurs de règles, le machine learning, le machine learning à base de réseaux de neurones, puis le deep learning qui utilise des réseaux de neurones profonds, et enfin, les agents et réseaux d’agents qui permettent d’assembler les briques de l’IA pour créer des solutions : robots, véhicules autonomes, chatbots et autres.

J’ai surtout expliqué comment fonctionnaient les réseaux de neurones profonds avec le cas de la reconnaissance d’images, puis expliqué comment ces réseaux de neurones étaient mis en œuvre côté matériel dans des processeurs spécialisés (GPU et processeurs neuromorphiques) qui font leur apparition à la fois du côté des serveurs, notamment pour les phases d’entrainement des réseaux de neurones, et du côté des objets connectés et mobiles, pour leur exécution. Avec les nouveaux risques que cela peut générer. Il y a d’ailleurs un lien étroit, dans la cybersécurité, entre l’IA, les objets connectés en tout genre et les réseaux télécoms. Ils constituent un continuum qu’il faut sécuriser de bout en bout ! Et les vulnérabilités à traiter sont très nombreuses à chacune des étapes de la chaine qui alimente les solutions exploitant des techniques logicielles à base d’IA. Cela affecte surtout celles qui fonctionnent avec des modèles probabilistes comme dans tout le périmètre du machine learning.

Processeurs et IA

J’expliquais aussi ce que l’on appelle le “biais des données”, et comment celui-ci peut amener à créer un système d’IA qui ne fonctionne pas bien dans la pratique lorsque ses données d’entrainement ne sont pas représentatives de son périmètre d’usage. L’exemple classique étant le système de reconnaissance faciale qui n’a été entrainé qu’avec des visages de blancs et qui ne reconnait donc pas les visages de couleur. Mais cet exemple, marquant, peut en illustrer d’autres.

Biais données

Au-delà de considérations humaines et éthiques, la question qui se pose est purement statistique et probabiliste : un système d’IA à base de machine learning et de deep learning ne fonctionnera bien que si les données qui ont servi à l’entrainer sont représentatives des données qui seront ensuite exploitées en production. C’est exactement le même problème que dans un sondage politique : l’échantillon utilisé doit être représentatif de la population d’ensemble. Si vous faites un sondage uniquement à Paris, dans le XVIe arrondissement, dans le 93, en Mayenne ou à Strasbourg, vous n’aurez pas un échantillon représentatif de la diversité du pays.

De nombreux systèmes d’IA sont entrainés avec des sources de données internes et externes à l’entreprise. C’est un moyen de créer des modèles pertinents avec des données complémentaires, mais cela présente aussi une surface d’attaque plus grande par des cyberpirates. Il faut donc en tenir compte dans la conception des modèles.

Donnees entrainement

Enfin, j’ai fait un rapide tour de quelques nouvelles menaces liées au machine learning et surtout au deep learning. Montrant par exemple comment on peut tromper des systèmes de vision artificielle en altérant très légèrement les images. Légèrement mais suffisamment pour modifier la reconnaissance d’images qui, dans la pratique, s’appuie sur des modèles probabilistes. Cf Understanding the limites of deep learning de Mariya Yao (mars 2017).

Reseau generatifs et attaques

J’ai aussi illustré cela avec la méthode de création de masques permettant de tromper le login FaceID de l’iPhone X. Cette méthode digne de la série et des films Mission Impossible, consiste à créer un masque 3D imitant la forme d’un visage standard, sur lequel sont plaquées les photos imprimées en 3D des yeux, de la bouche et du nez de la personne dont on veut débloquer le téléphone. Pourquoi ces parties du visage ? Parce que ce sont celles qui sont reconnues par le système de login d’Apple, et par les systèmes d’identification faciale en général. C’est là que se situent les traits qui sont transformés en paramètres mathématiques uniques permettant de reconnaitre un individu. C’est une belle vulnérabilité, mais le hack n’est tout de même pas facile à réaliser. Seuls les pirates réellement déterminés l’exploiteront et sur des cibles dites “à forte valeur”.

FaceID Hack

J’ai aussi présenté quelques exemples de “fake news” créés par des réseaux de neurones génératifs, comme le projet “face2face reenactment” qui permet d’animer un visage donné à partir de la captation de la vidéo d’une tierce personne, et celle consistant à faire parler Barack Obama avec un texte préparé. La technique utilise deux réseaux de neurones génératifs : l’un pour animer son visage et l’autre pour générer sa voix, originaire de la startup Lyrebird. Le tout est assez bluffant. Au passage, un petit truc : ces réseaux génératifs fonctionnent pour l’instant à basse résolution. Les images générées dépassent rarement 256 pixels de côté pour des raisons de puissance machine disponible. Mais avec les progrès du matériel, les faux vont probablement gagner rapidement en résolution et en réalisme.

Face2face

Juste après moi, j’ai assisté à une très bonne présentation pratique d’Anaël Beaugnon de l’ANSSI, l’agence du gouvernement qui gère la sécurité des systèmes d’information de l’Etat mais prodigue aussi des recommandations aux entreprises. Elle expliquait comment les solutions à base de machine learning étaient utilisées pour détecter des intrusions. Elle mettait bien en évidence les modèles statistiques sous-jacents et leurs limites. L’enjeu de ces systèmes est de minimiser leur détection de faux positifs ou, surtout, de faux négatifs, en raison d’effets de bord. Anaël Baugnon présentait l’outil SecuML développé à l’ANSSI qui sert à diagnostiquer un classifieur de cybersécurité. Il est en open source sur Github. J’ai au passage découvert de nombreux outils du monde de la cybersécurité en entreprise : la base de données de malwares Contagio, les outils de détection de fichiers PDF malveillants, le projet ILAB d’annotation de données par les experts pour la détection d’intrusion dont Anaël Baugnon est coauteure, ainsi que le projet ALADIN.

Sa présentation faisait bien écho à une tendance que l’on peut observer du côté des startups du secteur, qui se sont lancées dans l’utilisation du machine learning (avec ou sans réseaux de neurones) pour détecter des virus, phishings et autres intrusions. La tendance lourde du secteur consiste à créer des modèles statistiques qui détectent des “patterns” dans les logiciels suspects plutôt que de créer des bases de signature à la main. Ces systèmes exploitent essentiellement des techniques de machine learning.

Dans mon dernier ebook “Les usages de l’intelligence artificielle” publié en octobre 2017 (gratuit, et déjà téléchargé plus de 14 500 fois), je faisais ainsi un inventaire page 177 de quelques startups de ce secteur utilisant des modèles de machine learning : “Les tentatives de phishing sont détectées par GreatHorn (2015, $8,83m) ou avec Lookout (2007, $282m) qui sécurise les mobiles avec un modèle prédictif. Les malwares sont détectés avec du machine learning par Cylance (2012, $177M). L’israélien DeepInstinct (2014, $32M) protège les systèmes contre les failles de sécurité récentes (“zero day threats”). Ce serait la première startup à exploiter le deep learning – avec des GPU Nvidia – tandis que la plupart utilisaient du machine learning jusqu’à présent pour faire de l’analyse multifactorielle des menaces en lieu et place de l’utilisation de bases de signatures de virus. Dans le même genre, Recorded Future (2009, $33M) utilise le machine learning pour détecter les menaces de sécurité en temps réel. Des startups comme Onfido (2012, $30M) vérifient l’identité de clients de service en ligne. C’est de la détection de fraude basée sur du machine learning et du prédictif. L’israélien Fortscale (2012, $32M) identifie de son côté les menaces internes dans les entreprises, avec sa solution User & Entity Behavioral Analytics (UEBA). Il va détecter des comportements suspects comme la copie de fichiers de grande taille sur des clés USB ! Dans les pays où ce genre de surveillance est autorisée !”.

Il faudrait aussi ajouter les outils qui permettent d’analyser les failles de sécurité de ses propres solutions logicielles. Les offres sont abondantes dans ce domaine. On peut notamment citer le framework open source Frame-C développé par le CEA-LIST, l’institut de recherche sur les systèmes numériques intelligents du CEA, qui s’appuie directement sur des méthodes formelles à base d’IA.

Dans la pratique, les modèles doivent cependant être entraînés par des bases de données associant de nombreux logiciels et leur niveau de menace. Vincent Letoux d’Engie insistait dans sa présentation sur le besoin de ne jamais évacuer l’Homme des processus de décision dans ces systèmes. C’est un point de vue de bon sens. De son côté, Dimitri Tromboff de Thales expliquait comment le machine learning était utilisé dans la pratique.

D’autres interventions portaient sur des sujets de cybersécurité éloignés de la thématique de l’IA, comme un post-mortem de la lutte contre les ransomwares. Il y avait notamment celle du dynamique Eric Barbry, avocat du cabinet d’Alain Bensoussan que l’on ne présente plus. Il expliquait en 45 minutes bien denses les enjeux de l’entrée en vigueur de la directive RGPD le 25 mai 2018, portant sur la protection des données personnelles et la vie privée. Les entreprises vont avoir du pain sur la planche ! Il existe d’ailleurs une véritable interaction entre la RGPD et l’IA, notamment autour des notions du droit à l’oubli et de celui de la portabilité des données. Lorsque vos données personnelles ont servi à entrainer un réseau de neurones, comment fait-on pour faire oublier votre existence à ce réseau de neurones ? La question est mathématique et logique autant que juridique !

Bref, comme dans tous les métiers du numérique, la cybersécurité n’échappe pas à la vague de l’IA. L’IA amène à revoir les raisonnements, elle change les méthodes, et permet de se remémorer que l’IA ne fonctionne pas toute seule. Elle est alimentée et corrigée en permanence par des données d’origine humaine.

RRR

 
S
S
S
S
S
S
S
img
img
img

Publié le 30 novembre 2017 et mis à jour le 1 décembre 2017 Post de | Intelligence artificielle, Logiciels, Logiciels libres | 5018 lectures

PDF Afficher une version imprimable de cet article          

Reçevez par email les alertes de parution de nouveaux articles :


Ajouter un commentaire

Vous pouvez utiliser ces tags dans vos commentaires :<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> , sachant qu'une prévisualisation de votre commentaire est disponible en bas de page après le captcha.

Captcha

Pour valider votre commentaire, veuillez saisir les lettres ci-dessus et cliquer sur le bouton Publier le commentaire ci-dessus.


Derniers articles

Derniers albums photos

Depuis juillet 2014, mes photos sont maintenant intégrées dans ce site sous la forme d'albums consultables dans le plugin "Photo-Folders". Voici les derniers albums publiés ou mis à jour. Cliquez sur les vignettes pour accéder aux albums.
albth
Orange Salon Recherche Dec2017
2017
37 photos
albth
INRIA 50 ans Nov2017
2017
87 photos
albth
TEDx Paris Nov2017
2017
250 photos
albth
TEDxCE Women Paris Nov2017
2017
525 photos
albth
Hello Tomorrow Oct2017
2017
512 photos
albth
CES Unveiled Paris Oct2017
2017
54 photos
albth
S3 Odéon Oct2017
2017
336 photos

Téléchargements gratuits

L'ebook Les usages de l'intelligence artificielle, octobre 2017 (362 pages)

CouvertureAvanceesIA

Le Rapport du CES de Las Vegas, publié chaque année en janvier depuis 2006. Vous souhaitez une restitution personnalisée et un point de veille du marché pour votre organisation ? Contactez-moi.

CouvertureRapportCES

Le Guide des Startups, mis à jour chaque année au printemps, avec la somme la plus complète et actualisée d'informations pour lancer et faire vivre votre startup :

image

Voir aussi la liste complète des publications de ce blog.

image

Avec Marie-Anne Magnac, j'ai lancé #QFDN, l'initiative de valorisation de femmes du numérique par la photo. Installée depuis début octobre 2015 au Hub de Bpirance à Paris, elle circule dans différentes manifestations. L'initiative rassemble plus de 650 femmes du numérique (en juillet 2017) et elle s'enrichi en continu. Tous les métiers du numérique y sont représentés.

Les photos et les bios de ces femmes du numérique sont présentés au complet sur le site QFDN ! Vous pouvez aussi visualiser les derniers portraits publiés sur mon propre site photo. Et ci-dessous, les 16 derniers par date de prise de vue, les vignettes étant cliquables.
flow
Yousra Touki (Air France)
Yousra est chef de projet en analyse de données dans l'audit et le contrôle interne d'Air France KLM.
flow
Pascale Chehikian (Sopra-Steria)
Pascale est manager de projets de création et mise à disposition de services numériques dans les secteurs industriel et tertiaire chez Sopra Steria. Membre du programme Passer’Elles de Sopra Steria en faveur de la mixité.
flow
Elisabeth Moulin (Valeur d'Etre)
Elisabeth est créatrice de "Valeur d'être", organisation dédiée à l'émergence de projets humanistes, innovants pour les professionnels, les entreprises et les particuliers.
flow
Carole Thourigny (8FabLab)
Carole est directrice du 8 Fablab Drôme à Crest.
flow
Marie Poulle (LoveBox)
Marie est cofondatrice et chief brand&sales officer de la startup grenobloise Lovebox.
flow
Marie Dorange (Opla)
Marie est cofondatrice et CEO de la startup Opla dans l’intelligence artificielle, une plateforme de création d’assistants virtuels.
flow
Jade Ataoui (Boost in Lyon)
Jade est Déléguée Générale de BoostInLyon, l'accélérateur de startups de Lyon qui recrute, accompagne et fait décoller les startups lyonnaises. A également cofondé Percola.top, une agence de création de contenus en ligne.
flow
Audrey Moriaud
Audrey est Responsable Réseaux & Télécoms dans une Maison de luxe.
flow
Arlette Quillere (CRT Services)
Arlette est Directrice des Systèmes d’Information chez CRT Services.
flow
Laetitia Guillotin (Fleur en ville)
Laetitia est fondatrice du service en ligne de livraison de fleurs personnalisées Fleur en ville.
flow
Véronique Bardet (Banque Postale)
Véronique est Responsable Exploitation à la DSI de La Banque Postale et du Réseau du groupe La Poste.
flow
Nora Guemar (Engie)
Nora est analyste stratégique sénior à la direction de la stratégie du groupe Engie.
flow
Véronique Bonin (Bouygues)
Véronique est Directrice de la transformation numérique du groupe Bouygues.
flow
Diana Filipova
Diana est responsable de l’écosystème startups chez Microsoft France, où elle a fondé KissMyFrogs.com, le média alternatif des startups et de la tech en France. Egalement cofondatrice du collectif OuiShare, essayiste et écrivain.
flow
Sylvie Roche (CRiP)
Sylvie est Directrice Déléguée du CRiP, le Club des Responsables d’Infrastructure et de Production.
flow
Anna Stépanoff (Wild Code School)
Anna est co-fondatrice et dirigeante du réseau d’écoles numériques Wild Code School qui propose une formation d’excellence ouverte à tous au métier de développeur web et mobile. #entrepreneuse

Derniers commentaires

“Personnellement j'ai 69 ans et ma femme et moi adorons la 3D de qualité. J'ai une 65" 3D de Sony et j'espère qu'elle durera encore au moins une décennie et j'ai une collection de films. J'ai également acheté un 2e...”
“6 mois plus tard, est ce que nous avons du nouveau concernant Djingo et le partenariat avec Deutsche Telekom? Je n'ai absolument rien vu en terme de communication cote Deutsche...”
“#ebook: Les usages de l'#IA par @olivez , 362 pages d'étude sur ses retombées dans la...”
“Cet article va vous rendre plus intelligent sur l'IA : "Les conséquences pratiques d’AlphaGo Zero" de @olivez sur…...”
“Les usages de l’#IntelligenceArtificielle, l’#ebook d’@olivez sur la réalité de l’IA, ses acteurs et applications…...”

Tweets sur @olivez



Abonnement email

Pour recevoir par email les alertes de parution de nouveaux articles :


Catégories

Tags

http://www.oezratty.net/wordpress/2016/ecosysteme-entrepreneurial-guyane/

Voyages

Voici les compte-rendu de divers voyages d'études où j'ai notamment pu découvrir les écosystèmes d'innovation dans le numérique de ces différents pays :

Evénements

J'interviens dans de nombreuses conférences, événements, et aussi dans les entreprises. Quelques exemples d'interventions sont évoqués ici. De nombreuses vidéos de mes interventions en conférence sont également disponibles sur YouTube.